亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As more than 70$\%$ of reviews in the existing opinion summary data set are positive, current opinion summarization approaches are reluctant to generate negative summaries given the input of negative texts. To address such sentiment bias, a direct approach without the over-reliance on a specific framework is to generate additional data based on large language models to balance the emotional distribution of the dataset. However, data augmentation based on large language models faces two disadvantages: 1) the potential issues or toxicity in the augmented data; 2) the expensive costs. Therefore, in this paper, we propose a novel data augmentation framework based on both large and small language models for debiasing opinion summarization. In specific, a small size of synthesized negative reviews is obtained by rewriting the positive text via a large language model. Then, a disentangle reconstruction model is trained based on the generated data. After training, a large amount of synthetic data can be obtained by decoding the new representation obtained from the combination of different sample representations and filtering based on confusion degree and sentiment classification. Experiments have proved that our framework can effectively alleviate emotional bias same as using only large models, but more economically.

相關內容

Advancements in model algorithms, the growth of foundational models, and access to high-quality datasets have propelled the evolution of Artificial Intelligence Generated Content (AIGC). Despite its notable successes, AIGC still faces hurdles such as updating knowledge, handling long-tail data, mitigating data leakage, and managing high training and inference costs. Retrieval-Augmented Generation (RAG) has recently emerged as a paradigm to address such challenges. In particular, RAG introduces the information retrieval process, which enhances the generation process by retrieving relevant objects from available data stores, leading to higher accuracy and better robustness. In this paper, we comprehensively review existing efforts that integrate RAG technique into AIGC scenarios. We first classify RAG foundations according to how the retriever augments the generator, distilling the fundamental abstractions of the augmentation methodologies for various retrievers and generators. This unified perspective encompasses all RAG scenarios, illuminating advancements and pivotal technologies that help with potential future progress. We also summarize additional enhancements methods for RAG, facilitating effective engineering and implementation of RAG systems. Then from another view, we survey on practical applications of RAG across different modalities and tasks, offering valuable references for researchers and practitioners. Furthermore, we introduce the benchmarks for RAG, discuss the limitations of current RAG systems, and suggest potential directions for future research. Github: //github.com/PKU-DAIR/RAG-Survey.

The key factor in implementing machine learning algorithms in decision-making situations is not only the accuracy of the model but also its confidence level. The confidence level of a model in a classification problem is often given by the output vector of a softmax function for convenience. However, these values are known to deviate significantly from the actual expected model confidence. This problem is called model calibration and has been studied extensively. One of the simplest techniques to tackle this task is focal loss, a generalization of cross-entropy by introducing one positive parameter. Although many related studies exist because of the simplicity of the idea and its formalization, the theoretical analysis of its behavior is still insufficient. In this study, our objective is to understand the behavior of focal loss by reinterpreting this function geometrically. Our analysis suggests that focal loss reduces the curvature of the loss surface in training the model. This indicates that curvature may be one of the essential factors in achieving model calibration. We design numerical experiments to support this conjecture to reveal the behavior of focal loss and the relationship between calibration performance and curvature.

We propose GS-LRM, a scalable large reconstruction model that can predict high-quality 3D Gaussian primitives from 2-4 posed sparse images in 0.23 seconds on single A100 GPU. Our model features a very simple transformer-based architecture; we patchify input posed images, pass the concatenated multi-view image tokens through a sequence of transformer blocks, and decode final per-pixel Gaussian parameters directly from these tokens for differentiable rendering. In contrast to previous LRMs that can only reconstruct objects, by predicting per-pixel Gaussians, GS-LRM naturally handles scenes with large variations in scale and complexity. We show that our model can work on both object and scene captures by training it on Objaverse and RealEstate10K respectively. In both scenarios, the models outperform state-of-the-art baselines by a wide margin. We also demonstrate applications of our model in downstream 3D generation tasks. Our project webpage is available at: //sai-bi.github.io/project/gs-lrm/ .

Image quality assessment often relies on raw opinion scores provided by subjects in subjective experiments, which can be noisy and unreliable. To address this issue, postprocessing procedures such as ITU-R BT.500, ITU-T P.910, and ITU-T P.913 have been standardized to clean up the original opinion scores. These methods use annotator-based statistical priors, but they do not take into account extensive information about the image itself, which limits their performance in less annotated scenarios. Generally speaking, image quality datasets usually contain similar scenes or distortions, and it is inevitable for subjects to compare images to score a reasonable score when scoring. Therefore, In this paper, we proposed Subjective Image Quality Score Preprocessing Method perceptual similarity Subjective Preprocessing (PSP), which exploit the perceptual similarity between images to alleviate subjective bias in less annotated scenarios. Specifically, we model subjective scoring as a conditional probability model based on perceptual similarity with previously scored images, called subconscious reference scoring. The reference images are stored by a neighbor dictionary, which is obtained by a normalized vector dot-product based nearest neighbor search of the images' perceptual depth features. Then the preprocessed score is updated by the exponential moving average (EMA) of the subconscious reference scoring, called similarity regularized EMA. Our experiments on multiple datasets (LIVE, TID2013, CID2013) show that this method can effectively remove the bias of the subjective scores. Additionally, Experiments prove that the Preprocesed dataset can improve the performance of downstream IQA tasks very well.

This paper introduces PDEformer, a neural solver for partial differential equations (PDEs) capable of simultaneously addressing various types of PDEs. We propose to represent the PDE in the form of a computational graph, facilitating the seamless integration of both symbolic and numerical information inherent in a PDE. A graph Transformer and an implicit neural representation (INR) are employed to generate mesh-free predicted solutions. Following pretraining on data exhibiting a certain level of diversity, our model achieves zero-shot accuracies on benchmark datasets that is comparable to those of specifically trained expert models. Additionally, PDEformer demonstrates promising results in the inverse problem of PDE coefficient recovery.

In recent advances in automatic text recognition (ATR), deep neural networks have demonstrated the ability to implicitly capture language statistics, potentially reducing the need for traditional language models. This study directly addresses whether explicit language models, specifically n-gram models, still contribute to the performance of state-of-the-art deep learning architectures in the field of handwriting recognition. We evaluate two prominent neural network architectures, PyLaia and DAN, with and without the integration of explicit n-gram language models. Our experiments on three datasets - IAM, RIMES, and NorHand v2 - at both line and page level, investigate optimal parameters for n-gram models, including their order, weight, smoothing methods and tokenization level. The results show that incorporating character or subword n-gram models significantly improves the performance of ATR models on all datasets, challenging the notion that deep learning models alone are sufficient for optimal performance. In particular, the combination of DAN with a character language model outperforms current benchmarks, confirming the value of hybrid approaches in modern document analysis systems.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司