亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Problem Definition: Allocating sufficient capacity to cloud services is a challenging task, especially when demand is time-varying, heterogeneous, contains batches, and requires multiple types of resources for processing. In this setting, providers decide whether to reserve portions of their capacity to individual job classes or to offer it in a flexible manner. Methodology/results: In collaboration with Huawei Cloud, a worldwide provider of cloud services, we propose a heuristic policy that allocates multiple types of resources to jobs and also satisfies their pre-specified service level agreements (SLAs). We model the system as a multi-class queueing network with parallel processing and multiple types of resources, where arrivals (i.e., virtual machines and containers) follow time-varying patterns and require at least one unit of each resource for processing. While virtual machines leave if they are not served immediately, containers can join a queue. We introduce a diffusion approximation of the offered load of such system and investigate its fidelity as compared to the observed data. Then, we develop a heuristic approach that leverages this approximation to determine capacity levels that satisfy probabilistic SLAs in the system with fully flexible servers. Managerial Implications: Using a data set of cloud computing requests over a representative 8-day period from Huawei Cloud, we show that our heuristic policy results in a 20% capacity reduction and better service quality as compared to a benchmark that reserves resources. In addition, we show that the system utilization induced by our policy is superior to the benchmark, i.e., it implies less idling of resources in most instances. Thus, our approach enables cloud operators to both reduce costs and achieve better performance.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

Estimates of individual treatment effects from networked observational data are attracting increasing attention these days. One major challenge in network scenarios is the violation of the stable unit treatment value assumption (SUTVA), which assumes that the treatment assignment of a unit does not influence others' outcomes. In network data, due to interference, the outcome of a unit is influenced not only by its treatment (i.e., direct effects) but also by others' treatments (i.e., spillover effects). Furthermore, the influences from other units are always heterogeneous (e.g., friends with similar interests affect a person differently than friends with different interests). In this paper, we focus on the problem of estimating individual treatment effects (both direct and spillover effects) under heterogeneous interference. To address this issue, we propose a novel Dual Weighting Regression (DWR) algorithm by simultaneously learning attention weights that capture the heterogeneous interference and sample weights to eliminate the complex confounding bias in networks. We formulate the entire learning process as a bi-level optimization problem. In theory, we present generalization error bounds for individual treatment effect estimation. Extensive experiments on four benchmark datasets demonstrate that the proposed DWR algorithm outperforms state-of-the-art methods for estimating individual treatment effects under heterogeneous interference.

Many clinical studies require the follow-up of patients over time. This is challenging: apart from frequently observed drop-out, there are often also organizational and financial challenges, which can lead to reduced data collection and, in turn, can complicate subsequent analyses. In contrast, there is often plenty of baseline data available of patients with similar characteristics and background information, e.g., from patients that fall outside the study time window. In this article, we investigate whether we can benefit from the inclusion of such unlabeled data instances to predict accurate survival times. In other words, we introduce a third level of supervision in the context of survival analysis, apart from fully observed and censored instances, we also include unlabeled instances. We propose three approaches to deal with this novel setting and provide an empirical comparison over fifteen real-life clinical and gene expression survival datasets. Our results demonstrate that all approaches are able to increase the predictive performance over independent test data. We also show that integrating the partial supervision provided by censored data in a semi-supervised wrapper approach generally provides the best results, often achieving high improvements, compared to not using unlabeled data.

Graph neural networks (GNNs) have become one of the most popular research topics in both academia and industry communities for their strong ability in handling irregular graph data. However, large-scale datasets are posing great challenges for deploying GNNs in edge devices with limited resources and model compression techniques have drawn considerable research attention. Existing model compression techniques such as knowledge distillation (KD) mainly focus on convolutional neural networks (CNNs). Only limited attempts have been made recently for distilling knowledge from GNNs in an offline manner. As the performance of the teacher model does not necessarily improve as the number of layers increases in GNNs, selecting an appropriate teacher model will require substantial efforts. To address these challenges, we propose a novel online knowledge distillation framework called Alignahead++ in this paper. Alignahead++ transfers structure and feature information in a student layer to the previous layer of another simultaneously trained student model in an alternating training procedure. Meanwhile, to avoid over-smoothing problem in GNNs, deep supervision is employed in Alignahead++ by adding an auxiliary classifier in each intermediate layer to prevent the collapse of the node feature embeddings. Experimental results on four datasets including PPI, Cora, PubMed and CiteSeer demonstrate that the student performance is consistently boosted in our collaborative training framework without the supervision of a pre-trained teacher model and its effectiveness can generally be improved by increasing the number of students.

Dynamic heterogeneous networks describe the temporal evolution of interactions among nodes and edges of different types. While there is a rich literature on finding communities in dynamic networks, the application of these methods to dynamic heterogeneous networks can be inappropriate, due to the involvement of different types of nodes and edges and the need to treat them differently.In this paper, we propose a statistical framework for detecting common communities in dynamic and heterogeneous networks. Under this framework, we develop a fast community detection method called DHNet that can efficiently estimate the community label as well as the number of communities. An attractive feature of DHNet is that it does not require the number of communities to be known a priori, a common assumption in community detection methods. While DHNet does not require any parametric assumptions on the underlying network model, we show that the identified label is consistent under a time-varying heterogeneous stochastic block model with a temporal correlation structure and edge sparsity. We further illustrate the utility of DHNet through simulations and an application to review data from Yelp, where DHNet shows improvements both in terms of accuracy and interpretability over existing solutions.

Recovering linear subspaces from data is a fundamental and important task in statistics and machine learning. Motivated by heterogeneity in Federated Learning settings, we study a basic formulation of this problem: the principal component analysis (PCA), with a focus on dealing with irregular noise. Our data come from $n$ users with user $i$ contributing data samples from a $d$-dimensional distribution with mean $\mu_i$. Our goal is to recover the linear subspace shared by $\mu_1,\ldots,\mu_n$ using the data points from all users, where every data point from user $i$ is formed by adding an independent mean-zero noise vector to $\mu_i$. If we only have one data point from every user, subspace recovery is information-theoretically impossible when the covariance matrices of the noise vectors can be non-spherical, necessitating additional restrictive assumptions in previous work. We avoid these assumptions by leveraging at least two data points from each user, which allows us to design an efficiently-computable estimator under non-spherical and user-dependent noise. We prove an upper bound for the estimation error of our estimator in general scenarios where the number of data points and amount of noise can vary across users, and prove an information-theoretic error lower bound that not only matches the upper bound up to a constant factor, but also holds even for spherical Gaussian noise. This implies that our estimator does not introduce additional estimation error (up to a constant factor) due to irregularity in the noise. We show additional results for a linear regression problem in a similar setup.

Deep neural networks (DNNs) have succeeded in many different perception tasks, e.g., computer vision, natural language processing, reinforcement learning, etc. The high-performed DNNs heavily rely on intensive resource consumption. For example, training a DNN requires high dynamic memory, a large-scale dataset, and a large number of computations (a long training time); even inference with a DNN also demands a large amount of static storage, computations (a long inference time), and energy. Therefore, state-of-the-art DNNs are often deployed on a cloud server with a large number of super-computers, a high-bandwidth communication bus, a shared storage infrastructure, and a high power supplement. Recently, some new emerging intelligent applications, e.g., AR/VR, mobile assistants, Internet of Things, require us to deploy DNNs on resource-constrained edge devices. Compare to a cloud server, edge devices often have a rather small amount of resources. To deploy DNNs on edge devices, we need to reduce the size of DNNs, i.e., we target a better trade-off between resource consumption and model accuracy. In this dissertation, we studied four edge intelligence scenarios, i.e., Inference on Edge Devices, Adaptation on Edge Devices, Learning on Edge Devices, and Edge-Server Systems, and developed different methodologies to enable deep learning in each scenario. Since current DNNs are often over-parameterized, our goal is to find and reduce the redundancy of the DNNs in each scenario.

Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.

Deep Learning has revolutionized the fields of computer vision, natural language understanding, speech recognition, information retrieval and more. However, with the progressive improvements in deep learning models, their number of parameters, latency, resources required to train, etc. have all have increased significantly. Consequently, it has become important to pay attention to these footprint metrics of a model as well, not just its quality. We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency (spanning modeling techniques, infrastructure, and hardware) and the seminal work there. We also present an experiment-based guide along with code, for practitioners to optimize their model training and deployment. We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support. Our hope is that this survey would provide the reader with the mental model and the necessary understanding of the field to apply generic efficiency techniques to immediately get significant improvements, and also equip them with ideas for further research and experimentation to achieve additional gains.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

北京阿比特科技有限公司