We introduce an end-to-end model of participatory budgeting grounded in social choice theory. This model accounts for both the first stage, in which participants propose projects to be shortlisted, and the second stage, in which they vote on which of the shortlisted projects should be funded. We introduce several shortlisting rules for the first stage and we analyse them in both normative and algorithmic terms. Our main focus is on the incentives of participants to engage in strategic behaviour, especially in the first stage, in which they need to reason about how their proposals will impact the range of strategies available to everyone in the second stage.
We introduce two new stochastic conjugate frameworks for a class of nonconvex and possibly also nonsmooth optimization problems. These frameworks are built upon Stochastic Recursive Gradient Algorithm (SARAH) and we thus refer to them as Acc-Prox-CG-SARAH and Acc-Prox-CG-SARAH-RS, respectively. They are efficiently accelerated, easy to implement, tune free and can be smoothly extended and modified. We devise a deterministic restart scheme for stochastic optimization and apply it in our second stochastic conjugate framework, which serves the key difference between the two approaches. In addition, we apply the ProbAbilistic Gradient Estimator (PAGE) and further develop a practical variant, denoted as Acc-Prox-CG-SARAH-ST, in order to reduce potential computational overhead. We provide comprehensive and rigorous convergence analysis for all three approaches and establish linear convergence rates for unconstrained minimization problem with nonconvex and nonsmooth objective functions. Experiments have demonstrated that Acc-Prox-CG-SARAH and Acc-Prox-CG-SARAH-RS both outperform state-of-art methods consistently and Acc-Prox-CG-SARAH-ST can as well achieve comparable convergence speed. In terms of theory and experiments, we verify the strong computational efficiency of the deterministic restart scheme in stochastic optimization methods.
Clinically deployed segmentation models are known to fail on data outside of their training distribution. As these models perform well on most cases, it is imperative to detect out-of-distribution (OOD) images at inference to protect against automation bias. This work applies the Mahalanobis distance post hoc to the bottleneck features of a Swin UNETR model that segments the liver on T1-weighted magnetic resonance imaging. By reducing the dimensions of the bottleneck features with principal component analysis, OOD images were detected with high performance and minimal computational load.
Cooperative inference in Mobile Edge Computing (MEC), achieved by deploying partitioned Deep Neural Network (DNN) models between resource-constrained user equipments (UEs) and edge servers (ESs), has emerged as a promising paradigm. Firstly, we consider scenarios of continuous Artificial Intelligence (AI) task arrivals, like the object detection for video streams, and utilize a serial queuing model for the accurate evaluation of End-to-End (E2E) delay in cooperative edge inference. Secondly, to enhance the long-term performance of inference systems, we formulate a multi-slot stochastic E2E delay optimization problem that jointly considers model partitioning and multi-dimensional resource allocation. Finally, to solve this problem, we introduce a Lyapunov-guided Multi-Dimensional Optimization algorithm (LyMDO) that decouples the original problem into per-slot deterministic problems, where Deep Reinforcement Learning (DRL) and convex optimization are used for joint optimization of partitioning decisions and complementary resource allocation. Simulation results show that our approach effectively improves E2E delay while balancing long-term resource constraints.
Classes of target functions containing a large number of approximately orthogonal elements are known to be hard to learn by the Statistical Query algorithms. Recently this classical fact re-emerged in a theory of gradient-based optimization of neural networks. In the novel framework, the hardness of a class is usually quantified by the variance of the gradient with respect to a random choice of a target function. A set of functions of the form $x\to ax \bmod p$, where $a$ is taken from ${\mathbb Z}_p$, has attracted some attention from deep learning theorists and cryptographers recently. This class can be understood as a subset of $p$-periodic functions on ${\mathbb Z}$ and is tightly connected with a class of high-frequency periodic functions on the real line. We present a mathematical analysis of limitations and challenges associated with using gradient-based learning techniques to train a high-frequency periodic function or modular multiplication from examples. We highlight that the variance of the gradient is negligibly small in both cases when either a frequency or the prime base $p$ is large. This in turn prevents such a learning algorithm from being successful.
We consider rather a general class of multi-level optimization problems, where a convex objective function is to be minimized subject to constraints of optimality of nested convex optimization problems. As a special case, we consider a trilevel optimization problem, where the objective of the two lower layers consists of a sum of a smooth and a non-smooth term.~Based on fixed-point theory and related arguments, we present a natural first-order algorithm and analyze its convergence and rates of convergence in several regimes of parameters.
Deep networks typically learn concepts via classifiers, which involves setting up a model and training it via gradient descent to fit the concept-labeled data. We will argue instead that learning a concept could be done by looking at its moment statistics matrix to generate a concrete representation or signature of that concept. These signatures can be used to discover structure across the set of concepts and could recursively produce higher-level concepts by learning this structure from those signatures. When the concepts are `intersected', signatures of the concepts can be used to find a common theme across a number of related `intersected' concepts. This process could be used to keep a dictionary of concepts so that inputs could correctly identify and be routed to the set of concepts involved in the (latent) generation of the input.
Explainable recommender systems (RS) have traditionally followed a one-size-fits-all approach, delivering the same explanation level of detail to each user, without considering their individual needs and goals. Further, explanations in RS have so far been presented mostly in a static and non-interactive manner. To fill these research gaps, we aim in this paper to adopt a user-centered, interactive explanation model that provides explanations with different levels of detail and empowers users to interact with, control, and personalize the explanations based on their needs and preferences. We followed a user-centered approach to design interactive explanations with three levels of detail (basic, intermediate, and advanced) and implemented them in the transparent Recommendation and Interest Modeling Application (RIMA). We conducted a qualitative user study (N=14) to investigate the impact of providing interactive explanations with varying level of details on the users' perception of the explainable RS. Our study showed qualitative evidence that fostering interaction and giving users control in deciding which explanation they would like to see can meet the demands of users with different needs, preferences, and goals, and consequently can have positive effects on different crucial aspects in explainable recommendation, including transparency, trust, satisfaction, and user experience.
We investigate the randomized and quantum communication complexities of the well-studied Equality function with small error probability $\epsilon$, getting optimal constant factors in the leading terms in a number of different models. In the randomized model, 1) we give a general technique to convert public-coin protocols to private-coin protocols by incurring a small multiplicative error, at a small additive cost. This is an improvement over Newman's theorem [Inf. Proc. Let.'91] in the dependence on the error parameter. 2) Using this we obtain a $(\log(n/\epsilon^2)+4)$-cost private-coin communication protocol that computes the $n$-bit Equality function, to error $\epsilon$. This improves upon the $\log(n/\epsilon^3)+O(1)$ upper bound implied by Newman's theorem, and matches the best known lower bound, which follows from Alon [Comb. Prob. Comput.'09], up to an additive $\log\log(1/\epsilon)+O(1)$. In the quantum model, 1) we exhibit a one-way protocol of cost $\log(n/\epsilon)+4$, that uses only pure states and computes the $n$-bit Equality function to error $\epsilon$. This bound was implicitly already shown by Nayak [PhD thesis'99]. 2) We show that any $\epsilon$-error one-way protocol for $n$-bit Equality that uses only pure states communicates at least $\log(n/\epsilon)-\log\log(1/\epsilon)-O(1)$ qubits. 3) We exhibit a one-way protocol of cost $\log(\sqrt{n}/\epsilon)+3$, that uses mixed states and computes the $n$-bit Equality function to error $\epsilon$. This is also tight up to an additive $\log\log(1/\epsilon)+O(1)$, which follows from Alon's result. 4) We study the number of EPR pairs required to be shared in an entanglement-assisted one-way protocol. Our upper bounds also yield upper bounds on the approximate rank and related measures of the Identity matrix.
A generative AI model can generate extremely realistic-looking content, posing growing challenges to the authenticity of information. To address the challenges, watermark has been leveraged to detect AI-generated content. Specifically, a watermark is embedded into an AI-generated content before it is released. A content is detected as AI-generated if a similar watermark can be decoded from it. In this work, we perform a systematic study on the robustness of such watermark-based AI-generated content detection. We focus on AI-generated images. Our work shows that an attacker can post-process a watermarked image via adding a small, human-imperceptible perturbation to it, such that the post-processed image evades detection while maintaining its visual quality. We show the effectiveness of our attack both theoretically and empirically. Moreover, to evade detection, our adversarial post-processing method adds much smaller perturbations to AI-generated images and thus better maintain their visual quality than existing popular post-processing methods such as JPEG compression, Gaussian blur, and Brightness/Contrast. Our work shows the insufficiency of existing watermark-based detection of AI-generated content, highlighting the urgent needs of new methods. Our code is publicly available: //github.com/zhengyuan-jiang/WEvade.
Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.