Quality-Diversity (QD) methods are algorithms that aim to generate a set of diverse and high-performing solutions to a given problem. Originally developed for evolutionary robotics, most QD studies are conducted on a limited set of domains - mainly applied to locomotion, where the fitness and the behavior signal are dense. Grasping is a crucial task for manipulation in robotics. Despite the efforts of many research communities, this task is yet to be solved. Grasping cumulates unprecedented challenges in QD literature: it suffers from reward sparsity, behavioral sparsity, and behavior space misalignment. The present work studies how QD can address grasping. Experiments have been conducted on 15 different methods on 10 grasping domains, corresponding to 2 different robot-gripper setups and 5 standard objects. An evaluation framework that distinguishes the evaluation of an algorithm from its internal components has also been proposed for a fair comparison. The obtained results show that MAP-Elites variants that select successful solutions in priority outperform all the compared methods on the studied metrics by a large margin. We also found experimental evidence that sparse interaction can lead to deceptive novelty. To our knowledge, the ability to efficiently produce examples of grasping trajectories demonstrated in this work has no precedent in the literature.
Resource-constrained robots often suffer from energy inefficiencies, underutilized computational abilities due to inadequate task allocation, and a lack of robustness in dynamic environments, all of which strongly affect their performance. This paper introduces DREAM - Decentralized Reinforcement Learning for Exploration and Efficient Energy Management in Multi-Robot Systems, a comprehensive framework that optimizes the allocation of resources for efficient exploration. It advances beyond conventional heuristic-based task planning as observed conventionally. The framework incorporates Operational Range Estimation using Reinforcement Learning to perform exploration and obstacle avoidance in unfamiliar terrains. DREAM further introduces an Energy Consumption Model for goal allocation, thereby ensuring mission completion under constrained resources using a Graph Neural Network. This approach also ensures that the entire Multi-Robot System can survive for an extended period of time for further missions compared to the conventional approach of randomly allocating goals, which compromises one or more agents. Our approach adapts to prioritizing agents in real-time, showcasing remarkable resilience against dynamic environments. This robust solution was evaluated in various simulated environments, demonstrating adaptability and applicability across diverse scenarios. We observed a substantial improvement of about 25% over the baseline method, leading the way for future research in resource-constrained robotics.
Business optimisation is the process of finding and implementing efficient and cost-effective means of operation to bring a competitive advantage for businesses. Synthesizing problem formulations is an integral part of business optimisation which is centred around human expertise, thus with a high potential of becoming a bottleneck. With the recent advancements in Large Language Models (LLMs), human expertise needed in problem formulation can potentially be minimized using Artificial Intelligence (AI). However, developing a LLM for problem formulation is challenging, due to training data requirements, token limitations, and the lack of appropriate performance metrics in LLMs. To minimize the requirement of large training data, considerable attention has recently been directed towards fine-tuning pre-trained LLMs for downstream tasks, rather than training a LLM from scratch for a specific task. In this paper, we adopt this approach and propose an AI-Copilot for business optimisation by fine-tuning a pre-trained LLM for problem formulation. To address token limitations, we introduce modularization and prompt engineering techniques to synthesize complex problem formulations as modules that fit into the token limits of LLMs. In addition, we design performance evaluation metrics that are more suitable for assessing the accuracy and quality of problem formulations compared to existing evaluation metrics. Experiment results demonstrate that our AI-Copilot can synthesize complex and large problem formulations for a typical business optimisation problem in production scheduling.
Prediction rule ensembles (PREs) are a relatively new statistical learning method, which aim to strike a balance between predictive accuracy and interpretability. Starting from a decision tree ensemble, like a boosted tree ensemble or a random forest, PREs retain a small subset of tree nodes in the final predictive model. These nodes can be written as simple rules of the form if [condition] then [prediction]. As a result, PREs are often much less complex than full decision tree ensembles, while they have been found to provide similar predictive accuracy in many situations. The current paper introduces the methodology and shows how PREs can be fitted using the R package pre through several real-data examples from psychological research. The examples also illustrate a number of features of package \textbf{pre} that may be particularly useful for applications in psychology: support for categorical, multivariate and count responses, application of (non-)negativity constraints, inclusion of confirmatory rules and standardized variable importance measures.
Recently, Locate-Then-Edit paradigm has emerged as one of the main approaches in changing factual knowledge stored in the Language models. However, there is a lack of research on whether present locating methods can pinpoint the exact parameters embedding the desired knowledge. Moreover, although many researchers have questioned the validity of locality hypothesis of factual knowledge, no method is provided to test the a hypothesis for more in-depth discussion and research. Therefore, we introduce KLoB, a benchmark examining three essential properties that a reliable knowledge locating method should satisfy. KLoB can serve as a benchmark for evaluating existing locating methods in language models, and can contributes a method to reassessing the validity of locality hypothesis of factual knowledge. Our is publicly available at \url{//github.com/juyiming/KLoB}.
Current literature, aiming to surpass the "Chain-of-Thought" approach, often resorts to an external modus operandi involving halting, modifying, and then resuming the generation process to boost Large Language Models' (LLMs) reasoning capacities. This mode escalates the number of query requests, leading to increased costs, memory, and computational overheads. Addressing this, we propose the Algorithm of Thoughts -- a novel strategy that propels LLMs through algorithmic reasoning pathways, pioneering a new mode of in-context learning. By employing algorithmic examples, we exploit the innate recurrence dynamics of LLMs, expanding their idea exploration with merely one or a few queries. Our technique outperforms earlier single-query methods and stands on par with a recent multi-query strategy that employs an extensive tree search algorithm. Intriguingly, our results suggest that instructing an LLM using an algorithm can lead to performance surpassing that of the algorithm itself, hinting at LLM's inherent ability to weave its intuition into optimized searches. We probe into the underpinnings of our method's efficacy and its nuances in application.
Human-robot collaborative disassembly is an emerging trend in the sustainable recycling process of electronic and mechanical products. It requires the use of advanced technologies to assist workers in repetitive physical tasks and deal with creaky and potentially damaged components. Nevertheless, when disassembling worn-out or damaged components, unexpected robot behaviors may emerge, so harmless and symbiotic physical interaction with humans and the environment becomes paramount. This work addresses this challenge at the control level by ensuring safe and passive behaviors in unplanned interactions and contact losses. The proposed algorithm capitalizes on an energy-aware Cartesian impedance controller, which features energy scaling and damping injection, and an augmented energy tank, which limits the power flow from the controller to the robot. The controller is evaluated in a real-world flawed unscrewing task with a Franka Emika Panda and is compared to a standard impedance controller and a hybrid force-impedance controller. The results demonstrate the high potential of the algorithm in human-robot collaborative disassembly tasks.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.
Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.