In the framework of a mixed finite element method, a structure-preserving formulation for incompressible MHD equations with general boundary conditions is proposed. A leapfrog-type temporal scheme fully decouples the fluid part from the Maxwell part by means of staggered discrete time sequences and, in doing so, partially linearizes the system. Conservation and dissipation properties of the formulation before and after the decoupling are analyzed. We demonstrate optimal spatial and second-order temporal error convergence and conservation and dissipation properties of the proposed method using manufactured solutions, and apply it to the benchmark Orszag-Tang and lid-driven cavity test cases.
In this contribution we study the formal ability of a multi-resolution-times lattice Boltzmann scheme to approximate isothermal and thermal compressible Navier Stokes equations with a single particle distribution. More precisely, we consider a total of 12 classical square lattice Boltzmann schemes with prescribed sets of conserved and nonconserved moments. The question is to determine the algebraic expressions of the equilibrium functions for the nonconserved moments and the relaxation parameters associated to each scheme. We compare the fluid equations and the result of the Taylor expansion method at second order accuracy for bidimensional examples with a maximum of 17 velocities and three-dimensional schemes with at most 33 velocities. In some cases, it is not possible to fit exactly the physical model. For several examples, we adjust the Navier Stokes equations and propose nontrivial expressions for the equilibria.
We present a point set registration method in bounded domains based on the solution to the Fokker Planck equation. Our approach leverages (i) density estimation based on Gaussian mixture models; (ii) a stabilized finite element discretization of the Fokker Planck equation; (iii) a specialized method for the integration of the particles. We review relevant properties of the Fokker Planck equation that provide the foundations for the numerical method. We discuss two strategies for the integration of the particles and we propose a regularization technique to control the distance of the particles from the boundary of the domain. We perform extensive numerical experiments for two two-dimensional model problems to illustrate the many features of the method.
We propose and analyze a space--time finite element method for Westervelt's quasilinear model of ultrasound waves in second-order formulation. The method combines conforming finite element spatial discretizations with a discontinuous-continuous Galerkin time stepping. Its analysis is challenged by the fact that standard Galerkin testing approaches for wave problems do not allow for bounding the discrete energy at all times. By means of redesigned energy arguments for a linearized problem combined with Banach's fixed-point argument, we show the well-posedness of the scheme, a priori error estimates, and robustness with respect to the strong damping parameter $\delta$. Moreover, the scheme preserves the asymptotic preserving property of the continuous problem; more precisely, we prove that the discrete solutions corresponding to $\delta>0$ converge, in the singular vanishing dissipation limit, to the solution of the discrete inviscid problem. We use several numerical experiments in $(2 + 1)$-dimensions to validate our theoretical results.
Large-scale eigenvalue problems arise in various fields of science and engineering and demand computationally efficient solutions. In this study, we investigate the subspace approximation for parametric linear eigenvalue problems, aiming to mitigate the computational burden associated with high-fidelity systems. We provide general error estimates under non-simple eigenvalue conditions, establishing the theoretical foundations for our methodology. Numerical examples, ranging from one-dimensional to three-dimensional setups, are presented to demonstrate the efficacy of reduced basis method in handling parametric variations in boundary conditions and coefficient fields to achieve significant computational savings while maintaining high accuracy, making them promising tools for practical applications in large-scale eigenvalue computations.
Unlabeled sensing is a linear inverse problem with permuted measurements. We propose an alternating minimization (AltMin) algorithm with a suitable initialization for two widely considered permutation models: partially shuffled/$k$-sparse permutations and $r$-local/block diagonal permutations. Key to the performance of the AltMin algorithm is the initialization. For the exact unlabeled sensing problem, assuming either a Gaussian measurement matrix or a sub-Gaussian signal, we bound the initialization error in terms of the number of blocks $s$ and the number of shuffles $k$. Experimental results show that our algorithm is fast, applicable to both permutation models, and robust to choice of measurement matrix. We also test our algorithm on several real datasets for the linked linear regression problem and show superior performance compared to baseline methods.
An extremely schematic model of the forces acting an a sailing yacht equipped with a system of foils is here presented and discussed. The role of the foils is to raise the hull from the water in order to reduce the total resistance and then increase the speed. Some CFD simulations are providing the total resistance of the bare hull at some values of speed and displacement, as well as the characteristics (drag and lift coefficients) of the 2D foil sections used for the appendages. A parametric study has been performed for the characterization of a foil of finite dimensions. The equilibrium of the vertical forces and longitudinal moments, as well as a reduced displacement, is obtained by controlling the pitch angle of the foils. The value of the total resistance of the yacht with foils is then compared with the case without foils, evidencing the speed regime where an advantage is obtained, if any.
We consider the discretization of a class of nonlinear parabolic equations by discontinuous Galerkin time-stepping methods and establish a priori as well as conditional a posteriori error estimates. Our approach is motivated by the error analysis in [9] for Runge-Kutta methods for nonlinear parabolic equations; in analogy to [9], the proofs are based on maximal regularity properties of discontinuous Galerkin methods for non-autonomous linear parabolic equations.
We consider the vorticity formulation of the Euler equations describing the flow of a two-dimensional incompressible ideal fluid on the sphere. Zeitlin's model provides a finite-dimensional approximation of the vorticity formulation that preserves the underlying geometric structure: it consists of an isospectral Lie--Poisson flow on the Lie algebra of skew-Hermitian matrices. We propose an approximation of Zeitlin's model based on a time-dependent low-rank factorization of the vorticity matrix and evolve a basis of eigenvectors according to the Euler equations. In particular, we show that the approximate flow remains isospectral and Lie--Poisson and that the error in the solution, in the approximation of the Hamiltonian and of the Casimir functions only depends on the approximation of the vorticity matrix at the initial time. The computational complexity of solving the approximate model is shown to scale quadratically with the order of the vorticity matrix and linearly if a further approximation of the stream function is introduced.
This work considers the Galerkin approximation and analysis for a hyperbolic integrodifferential equation, where the non-positive variable-sign kernel and nonlinear-nonlocal damping with both the weak and viscous damping effects are involved. We derive the long-time stability of the solution and its finite-time uniqueness. For the semi-discrete-in-space Galerkin scheme, we derive the long-time stability of the semi-discrete numerical solution and its finite-time error estimate by technical splitting of intricate terms. Then we further apply the centering difference method and the interpolating quadrature to construct a fully discrete Galerkin scheme and prove the long-time stability of the numerical solution and its finite-time error estimate by designing a new semi-norm. Numerical experiments are performed to verify the theoretical findings.
In this contribution, we address the numerical solutions of high-order asymptotic equivalent partial differential equations with the results of a lattice Boltzmann scheme for an inhomogeneous advection problem in one spatial dimension. We first derive a family of equivalent partial differential equations at various orders, and we compare the lattice Boltzmann experimental results with a spectral approximation of the differential equations. For an unsteady situation, we show that the initialization scheme at a sufficiently high order of the microscopic moments plays a crucial role to observe an asymptotic error consistent with the order of approximation. For a stationary long-time limit, we observe that the measured asymptotic error converges with a reduced order of precision compared to the one suggested by asymptotic analysis.