亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gaussian processes that can be decomposed into a smooth mean function and a stationary autocorrelated noise process are considered and a fully automatic nonparametric method to simultaneous estimation of mean and auto-covariance functions of such processes is developed. Our empirical Bayes approach is data-driven, numerically efficient and allows for the construction of confidence sets for the mean function. Performance is demonstrated in simulations and real data analysis. The method is implemented in the R package eBsc that accompanies the paper.

相關內容

Discrete and especially binary random variables occur in many machine learning models, notably in variational autoencoders with binary latent states and in stochastic binary networks. When learning such models, a key tool is an estimator of the gradient of the expected loss with respect to the probabilities of binary variables. The straight-through (ST) estimator gained popularity due to its simplicity and efficiency, in particular in deep networks where unbiased estimators are impractical. Several techniques were proposed to improve over ST while keeping the same low computational complexity: Gumbel-Softmax, ST-Gumbel-Softmax, BayesBiNN, FouST. We conduct a theoretical analysis of bias and variance of these methods in order to understand tradeoffs and verify the originally claimed properties. The presented theoretical results allow for better understanding of these methods and in some cases reveal serious issues.

We consider the problem of testing for long-range dependence for time-varying coefficient regression models. The covariates and errors are assumed to be locally stationary, which allows complex temporal dynamics and heteroscedasticity. We develop KPSS, R/S, V/S, and K/S-type statistics based on the nonparametric residuals, and propose bootstrap approaches equipped with a difference-based long-run covariance matrix estimator for practical implementation. Under the null hypothesis, the local alternatives as well as the fixed alternatives, we derive the limiting distributions of the test statistics, establish the uniform consistency of the difference-based long-run covariance estimator, and justify the bootstrap algorithms theoretically. In particular, the exact local asymptotic power of our testing procedure enjoys the order $O( \log^{-1} n)$, the same as that of the classical KPSS test for long memory in strictly stationary series without covariates. We demonstrate the effectiveness of our tests by extensive simulation studies. The proposed tests are applied to a COVID-19 dataset in favor of long-range dependence in the cumulative confirmed series of COVID-19 in several countries, and to the Hong Kong circulatory and respiratory dataset, identifying a new type of 'spurious long memory'.

Nonlinear metrics, such as the F1-score, Matthews correlation coefficient, and Fowlkes-Mallows index, are often used to evaluate the performance of machine learning models, in particular, when facing imbalanced datasets that contain more samples of one class than the other. Recent optimal decision tree algorithms have shown remarkable progress in producing trees that are optimal with respect to linear criteria, such as accuracy, but unfortunately nonlinear metrics remain a challenge. To address this gap, we propose a novel algorithm based on bi-objective optimisation, which treats misclassifications of each binary class as a separate objective. We show that, for a large class of metrics, the optimal tree lies on the Pareto frontier. Consequently, we obtain the optimal tree by using our method to generate the set of all nondominated trees. To the best of our knowledge, this is the first method to compute provably optimal decision trees for nonlinear metrics. Our approach leads to a trade-off when compared to optimising linear metrics: the resulting trees may be more desirable according to the given nonlinear metric at the expense of higher runtimes. Nevertheless, the experiments illustrate that runtimes are reasonable for majority of the tested datasets.

When studying treatment effects in multilevel studies, investigators commonly use (semi-)parametric estimators, which make strong parametric assumptions about the outcome, the treatment, and/or the correlation between individuals. We propose two nonparametric, doubly robust, asymptotically Normal estimators of treatment effects that do not make such assumptions. The first estimator is an extension of the cross-fitting estimator applied to clustered settings. The second estimator is a new estimator that uses conditional propensity scores and an outcome covariance model to improve efficiency. We apply our estimators in simulation and empirical studies and find that they consistently obtain the smallest standard errors.

Thanks to their ability to capture complex dependence structures, copulas are frequently used to glue random variables into a joint model with arbitrary marginal distributions. More recently, they have been applied to solve statistical learning problems such as regression or classification. Framing such approaches as solutions of estimating equations, we generalize them in a unified framework. We can then obtain simultaneous, coherent inferences across multiple regression-like problems. We derive consistency, asymptotic normality, and validity of the bootstrap for corresponding estimators. The conditions allow for both continuous and discrete data as well as parametric, nonparametric, and semiparametric estimators of the copula and marginal distributions. The versatility of this methodology is illustrated by several theoretical examples, a simulation study, and an application to financial portfolio allocation.

The matrix normal model, the family of Gaussian matrix-variate distributions whose covariance matrix is the Kronecker product of two lower dimensional factors, is frequently used to model matrix-variate data. The tensor normal model generalizes this family to Kronecker products of three or more factors. We study the estimation of the Kronecker factors of the covariance matrix in the matrix and tensor models. We show nonasymptotic bounds for the error achieved by the maximum likelihood estimator (MLE) in several natural metrics. In contrast to existing bounds, our results do not rely on the factors being well-conditioned or sparse. For the matrix normal model, all our bounds are minimax optimal up to logarithmic factors, and for the tensor normal model our bound for the largest factor and overall covariance matrix are minimax optimal up to constant factors provided there are enough samples for any estimator to obtain constant Frobenius error. In the same regimes as our sample complexity bounds, we show that an iterative procedure to compute the MLE known as the flip-flop algorithm converges linearly with high probability. Our main tool is geodesic strong convexity in the geometry on positive-definite matrices induced by the Fisher information metric. This strong convexity is determined by the expansion of certain random quantum channels. We also provide numerical evidence that combining the flip-flop algorithm with a simple shrinkage estimator can improve performance in the undersampled regime.

We revisit the classical problem of nonparametric density estimation, but impose local differential privacy constraints. Under such constraints, the original multivariate data $X_1,\ldots,X_n \in \mathbb{R}^d$ cannot be directly observed, and all estimators are functions of the randomised output of a suitable privacy mechanism. The statistician is free to choose the form of the privacy mechanism, and in this work we propose to add Laplace distributed noise to a discretisation of the location of a vector $X_i$. Based on these randomised data, we design a novel estimator of the density function, which can be viewed as a privatised version of the well-studied histogram density estimator. Our theoretical results include universal pointwise consistency and strong universal $L_1$-consistency. In addition, a convergence rate over classes of Lipschitz functions is derived, which is complemented by a matching minimax lower bound. We illustrate the trade-off between data utility and privacy by means of a small simulation study.

We study the problem of estimating a rank-$1$ signal in the presence of rotationally invariant noise-a class of perturbations more general than Gaussian noise. Principal Component Analysis (PCA) provides a natural estimator, and sharp results on its performance have been obtained in the high-dimensional regime. Recently, an Approximate Message Passing (AMP) algorithm has been proposed as an alternative estimator with the potential to improve the accuracy of PCA. However, the existing analysis of AMP requires an initialization that is both correlated with the signal and independent of the noise, which is often unrealistic in practice. In this work, we combine the two methods, and propose to initialize AMP with PCA. Our main result is a rigorous asymptotic characterization of the performance of this estimator. Both the AMP algorithm and its analysis differ from those previously derived in the Gaussian setting: at every iteration, our AMP algorithm requires a specific term to account for PCA initialization, while in the Gaussian case, PCA initialization affects only the first iteration of AMP. The proof is based on a two-phase artificial AMP that first approximates the PCA estimator and then mimics the true AMP. Our numerical simulations show an excellent agreement between AMP results and theoretical predictions, and suggest an interesting open direction on achieving Bayes-optimal performance.

Potts models, which can be used to analyze dependent observations on a lattice, have seen widespread application in a variety of areas, including statistical mechanics, neuroscience, and quantum computing. To address the intractability of Potts likelihoods for large spatial fields, we propose fast ordered conditional approximations that enable rapid inference for observed and hidden Potts models. Our methods can be used to directly obtain samples from the approximate joint distribution of an entire Potts field. The computational complexity of our approximation methods is linear in the number of spatial locations; in addition, some of the necessary computations are naturally parallel. We illustrate the advantages of our approach using simulated data and a satellite image.

Functional data are frequently accompanied by parametric templates that describe the typical shapes of the functions. Although the templates incorporate critical domain knowledge, parametric functional data models can incur significant bias, which undermines the usefulness and interpretability of these models. To correct for model misspecification, we augment the parametric templates with an infinite-dimensional nonparametric functional basis. Crucially, the nonparametric factors are regularized with an ordered spike-and-slab prior, which implicitly provides consistent rank selection and satisfies several appealing theoretical properties. This prior is accompanied by a parameter-expansion scheme customized to boost MCMC efficiency, and is broadly applicable for Bayesian factor models. The nonparametric basis functions are learned from the data, yet constrained to be orthogonal to the parametric template in order to preserve distinctness between the parametric and nonparametric terms. The versatility of the proposed approach is illustrated through applications to synthetic data, human motor control data, and dynamic yield curve data. Relative to parametric alternatives, the proposed semiparametric functional factor model eliminates bias, reduces excessive posterior and predictive uncertainty, and provides reliable inference on the effective number of nonparametric terms--all with minimal additional computational costs.

北京阿比特科技有限公司