We give the first efficient algorithm for learning halfspaces in the testable learning model recently defined by Rubinfeld and Vasilyan (2023). In this model, a learner certifies that the accuracy of its output hypothesis is near optimal whenever the training set passes an associated test, and training sets drawn from some target distribution -- e.g., the Gaussian -- must pass the test. This model is more challenging than distribution-specific agnostic or Massart noise models where the learner is allowed to fail arbitrarily if the distributional assumption does not hold. We consider the setting where the target distribution is Gaussian (or more generally any strongly log-concave distribution) in $d$ dimensions and the noise model is either Massart or adversarial (agnostic). For Massart noise, our tester-learner runs in polynomial time and outputs a hypothesis with (information-theoretically optimal) error $\mathsf{opt} + \epsilon$ for any strongly log-concave target distribution. For adversarial noise, our tester-learner obtains error $O(\mathsf{opt}) + \epsilon$ in polynomial time when the target distribution is Gaussian; for strongly log-concave distributions, we obtain $\tilde{O}(\mathsf{opt}) + \epsilon$ in quasipolynomial time. Prior work on testable learning ignores the labels in the training set and checks that the empirical moments of the covariates are close to the moments of the base distribution. Here we develop new tests of independent interest that make critical use of the labels and combine them with the moment-matching approach of Gollakota et al. (2023). This enables us to simulate a variant of the algorithm of Diakonikolas et al. (2020) for learning noisy halfspaces using nonconvex SGD but in the testable learning setting.
Data in many real-world applications are often accumulated over time, like a stream. In contrast to conventional machine learning studies that focus on learning from a given training data set, learning from data streams cannot ignore the fact that the incoming data stream can be potentially endless with overwhelming size and unknown changes, and it is impractical to assume to have sufficient computational/storage resource such that all received data can be handled in time. Thus, the generalization performance of learning from data streams depends not only on how many data have been received, but also on how many data can be well exploited timely, with resource and rapidity concerns, in addition to the ability of learning algorithm and complexity of the problem. For this purpose, in this article we introduce the notion of machine learning throughput, define Stream Efficient Learning and present a preliminary theoretical framework.
Adversarial contrastive learning (ACL) does not require expensive data annotations but outputs a robust representation that withstands adversarial attacks and also generalizes to a wide range of downstream tasks. However, ACL needs tremendous running time to generate the adversarial variants of all training data, which limits its scalability to large datasets. To speed up ACL, this paper proposes a robustness-aware coreset selection (RCS) method. RCS does not require label information and searches for an informative subset that minimizes a representational divergence, which is the distance of the representation between natural data and their virtual adversarial variants. The vanilla solution of RCS via traversing all possible subsets is computationally prohibitive. Therefore, we theoretically transform RCS into a surrogate problem of submodular maximization, of which the greedy search is an efficient solution with an optimality guarantee for the original problem. Empirically, our comprehensive results corroborate that RCS can speed up ACL by a large margin without significantly hurting the robustness transferability. Notably, to the best of our knowledge, we are the first to conduct ACL efficiently on the large-scale ImageNet-1K dataset to obtain an effective robust representation via RCS.
Many reinforcement learning (RL) applications have combinatorial action spaces, where each action is a composition of sub-actions. A standard RL approach ignores this inherent factorization structure, resulting in a potential failure to make meaningful inferences about rarely observed sub-action combinations; this is particularly problematic for offline settings, where data may be limited. In this work, we propose a form of linear Q-function decomposition induced by factored action spaces. We study the theoretical properties of our approach, identifying scenarios where it is guaranteed to lead to zero bias when used to approximate the Q-function. Outside the regimes with theoretical guarantees, we show that our approach can still be useful because it leads to better sample efficiency without necessarily sacrificing policy optimality, allowing us to achieve a better bias-variance trade-off. Across several offline RL problems using simulators and real-world datasets motivated by healthcare, we demonstrate that incorporating factored action spaces into value-based RL can result in better-performing policies. Our approach can help an agent make more accurate inferences within underexplored regions of the state-action space when applying RL to observational datasets.
A modification of Newton's method for solving systems of $n$ nonlinear equations is presented. The new matrix-free method relies on a given decomposition of the invertible Jacobian of the residual into invertible sparse local Jacobians according to the chain rule of differentiation. It is motivated in the context of local Jacobians with bandwidth $2m+1$ for $m\ll n$. A reduction of the computational cost by $\mathcal{O}(\frac{n}{m})$ can be observed. Supporting run time measurements are presented for the tridiagonal case showing a reduction of the computational cost by $\mathcal{O}(n).$ Generalization yields the combinatorial Matrix-Free Newton Step problem. We prove is NP-completeness and we present several algorithmic components for building methods for its approximate solution. Inspired by adjoint Algorithmic Differentiation the new method shares several challenges for the latter including the DAG Reversal problem. Further challenges are due to combinatorial problems in sparse linear algebra such as Bandwidth or Directed Elimination Ordering.
Machine learning methods are increasingly used to build computationally inexpensive surrogates for complex physical models. The predictive capability of these surrogates suffers when data are noisy, sparse, or time-dependent. As we are interested in finding a surrogate that provides valid predictions of any potential future model evaluations, we introduce an online learning method empowered by optimizer-driven sampling. The method has two advantages over current approaches. First, it ensures that all turning points on the model response surface are included in the training data. Second, after any new model evaluations, surrogates are tested and "retrained" (updated) if the "score" drops below a validity threshold. Tests on benchmark functions reveal that optimizer-directed sampling generally outperforms traditional sampling methods in terms of accuracy around local extrema, even when the scoring metric favors overall accuracy. We apply our method to simulations of nuclear matter to demonstrate that highly accurate surrogates for the nuclear equation of state can be reliably auto-generated from expensive calculations using a few model evaluations.
We consider the adversarial linear contextual bandit setting, which allows for the loss functions associated with each of $K$ arms to change over time without restriction. Assuming the $d$-dimensional contexts are drawn from a fixed known distribution, the worst-case expected regret over the course of $T$ rounds is known to scale as $\tilde O(\sqrt{Kd T})$. Under the additional assumption that the density of the contexts is log-concave, we obtain a second-order bound of order $\tilde O(K\sqrt{d V_T})$ in terms of the cumulative second moment of the learner's losses $V_T$, and a closely related first-order bound of order $\tilde O(K\sqrt{d L_T^*})$ in terms of the cumulative loss of the best policy $L_T^*$. Since $V_T$ or $L_T^*$ may be significantly smaller than $T$, these improve over the worst-case regret whenever the environment is relatively benign. Our results are obtained using a truncated version of the continuous exponential weights algorithm over the probability simplex, which we analyse by exploiting a novel connection to the linear bandit setting without contexts.
In this paper, we find a sample complexity bound for learning a simplex from noisy samples. Assume a dataset of size $n$ is given which includes i.i.d. samples drawn from a uniform distribution over an unknown simplex in $\mathbb{R}^K$, where samples are assumed to be corrupted by a multi-variate additive Gaussian noise of an arbitrary magnitude. We prove the existence of an algorithm that with high probability outputs a simplex having a $\ell_2$ distance of at most $\varepsilon$ from the true simplex (for any $\varepsilon>0$). Also, we theoretically show that in order to achieve this bound, it is sufficient to have $n\ge\left(K^2/\varepsilon^2\right)e^{\Omega\left(K/\mathrm{SNR}^2\right)}$ samples, where $\mathrm{SNR}$ stands for the signal-to-noise ratio. This result solves an important open problem and shows as long as $\mathrm{SNR}\ge\Omega\left(K^{1/2}\right)$, the sample complexity of the noisy regime has the same order to that of the noiseless case. Our proofs are a combination of the so-called sample compression technique in \citep{ashtiani2018nearly}, mathematical tools from high-dimensional geometry, and Fourier analysis. In particular, we have proposed a general Fourier-based technique for recovery of a more general class of distribution families from additive Gaussian noise, which can be further used in a variety of other related problems.
Kemeny's rule is one of the most studied and well-known voting schemes with various important applications in computational social choice and biology. Recently, Kemeny's rule was generalized via a set-wise approach by Gilbert et. al. Following this paradigm, we have shown in \cite{Phung-Hamel-2023} that the $3$-wise Kemeny voting scheme induced by the $3$-wise Kendall-tau distance presents interesting advantages in comparison with the classical Kemeny rule. While the $3$-wise Kemeny problem, which consists of computing the set of $3$-wise consensus rankings of a voting profile, is NP-hard, we establish in this paper several generalizations of the Major Order Theorems, as obtained in \cite{Milosz-Hamel-2020} for the classical Kemeny rule, for the $3$-wise Kemeny voting scheme to achieve a substantial search space reduction by efficiently determining in polynomial time the relative orders of pairs of alternatives. Essentially, our theorems quantify precisely the non-trivial property that if the preference for an alternative over another one in an election is strong enough, not only in the head-to-head competition but even when taking into consideration one or two more alternatives, then the relative order of these two alternatives in every $3$-wise consensus ranking must be as expected. Moreover, we show that the well-known $3/4$-majority rule of Betzler et al. for the classical Kemeny rule is only valid for elections with no more than $5$ alternatives with respect to the $3$-wise Kemeny scheme. Examples are also provided to show that the $3$-wise Kemeny rule is more resistant to manipulation than the classical one.
Data valuation is a powerful framework for providing statistical insights into which data are beneficial or detrimental to model training. Many Shapley-based data valuation methods have shown promising results in various downstream tasks, however, they are well known to be computationally challenging as it requires training a large number of models. As a result, it has been recognized as infeasible to apply to large datasets. To address this issue, we propose Data-OOB, a new data valuation method for a bagging model that utilizes the out-of-bag estimate. The proposed method is computationally efficient and can scale to millions of data by reusing trained weak learners. Specifically, Data-OOB takes less than 2.25 hours on a single CPU processor when there are $10^6$ samples to evaluate and the input dimension is 100. Furthermore, Data-OOB has solid theoretical interpretations in that it identifies the same important data point as the infinitesimal jackknife influence function when two different points are compared. We conduct comprehensive experiments using 12 classification datasets, each with thousands of sample sizes. We demonstrate that the proposed method significantly outperforms existing state-of-the-art data valuation methods in identifying mislabeled data and finding a set of helpful (or harmful) data points, highlighting the potential for applying data values in real-world applications.
For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.