亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-agent reinforcement learning (MARL) addresses sequential decision-making problems with multiple agents, where each agent optimizes its own objective. In many real-world instances, the agents may not only want to optimize their objectives, but also ensure safe behavior. For example, in traffic routing, each car (agent) aims to reach its destination quickly (objective) while avoiding collisions (safety). Constrained Markov Games (CMGs) are a natural formalism for safe MARL problems, though generally intractable. In this work, we introduce and study Constrained Markov Potential Games (CMPGs), an important class of CMGs. We first show that a Nash policy for CMPGs can be found via constrained optimization. One tempting approach is to solve it by Lagrangian-based primal-dual methods. As we show, in contrast to the single-agent setting, however, CMPGs do not satisfy strong duality, rendering such approaches inapplicable and potentially unsafe. To solve the CMPG problem, we propose our algorithm Coordinate-Ascent for CMPGs (CA-CMPG), which provably converges to a Nash policy in tabular, finite-horizon CMPGs. Furthermore, we provide the first sample complexity bounds for learning Nash policies in unknown CMPGs, and, which under additional assumptions, guarantee safe exploration.

相關內容

Off-policy learning enables a reinforcement learning (RL) agent to reason counterfactually about policies that are not executed and is one of the most important ideas in RL. It, however, can lead to instability when combined with function approximation and bootstrapping, two arguably indispensable ingredients for large-scale reinforcement learning. This is the notorious deadly triad. Gradient Temporal Difference (GTD) is one powerful tool to solve the deadly triad. Its success results from solving a doubling sampling issue indirectly with weight duplication or Fenchel duality. In this paper, we instead propose a direct method to solve the double sampling issue by simply using two samples in a Markovian data stream with an increasing gap. The resulting algorithm is as computationally efficient as GTD but gets rid of GTD's extra weights. The only price we pay is a logarithmically increasing memory as time progresses. We provide both asymptotic and finite sample analysis, where the convergence rate is on-par with the canonical on-policy temporal difference learning. Key to our analysis is a novel refined discretization of limiting ODEs.

We approach two interconnected problems of quantum information processing in networks: Conference key agreement and entanglement distillation, both in the so-called source model where the given resource is a multipartite quantum state and the players interact over public classical channels to generate the desired correlation. The first problem is the distillation of a conference key when the source state is shared between a number of legal players and an eavesdropper; the eavesdropper, apart from starting off with this quantum side information, also observes the public communication between the players. The second is the distillation of Greenberger-Horne-Zeilinger (GHZ) states by means of local operations and classical communication (LOCC) from the given mixed state. These problem settings extend our previous paper [IEEE Trans. Inf. Theory 68(2):976-988, 2022], and we generalise its results: using a quantum version of the task of communication for omniscience, we derive novel lower bounds on the distillable conference key from any multipartite quantum state by means of non-interacting communication protocols. Secondly, we establish novel lower bounds on the yield of GHZ states from multipartite mixed states. Namely, we present two methods to produce bipartite entanglement between sufficiently many nodes so as to produce GHZ states. Next, we show that the conference key agreement protocol can be made coherent under certain conditions, enabling the direct generation of multipartite GHZ states.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Providing model-generated explanations in recommender systems is important to user experience. State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely ignored recently due to the availability of vast amount of data and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors and the knowledge is helpful for providing informed explanations regarding the recommended items. In this work, we propose to reason over knowledge base embeddings for explainable recommendation. Specifically, we propose a knowledge base representation learning framework to embed heterogeneous entities for recommendation, and based on the embedded knowledge base, a soft matching algorithm is proposed to generate personalized explanations for the recommended items. Experimental results on real-world e-commerce datasets verified the superior recommendation performance and the explainability power of our approach compared with state-of-the-art baselines.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks' matrix representations to learn an embedding for each node. Explicit feature methods train a machine learning model on two nodes' explicit attributes. Each of the three types of methods has its unique merits. In this paper, we propose SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction), a new framework for link prediction which combines the power of all the three types into a single graph neural network (GNN). GNN is a new type of neural network which directly accepts graphs as input and outputs their labels. In SEAL, the input to the GNN is a local subgraph around each target link. We prove theoretically that our local subgraphs also reserve a great deal of high-order graph structure features related to link existence. Another key feature is that our GNN can naturally incorporate latent features and explicit features. It is achieved by concatenating node embeddings (latent features) and node attributes (explicit features) in the node information matrix for each subgraph, thus combining the three types of features to enhance GNN learning. Through extensive experiments, SEAL shows unprecedentedly strong performance against a wide range of baseline methods, including various link prediction heuristics and network embedding methods.

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

北京阿比特科技有限公司