A useful property of independent samples is that their correlation remains the same after applying marginal transforms. This invariance property plays a fundamental role in statistical inference, but does not hold in general for dependent samples. In this paper, we study this invariance property on the Pearson correlation coefficient and its applications. A multivariate random vector is said to have an invariant correlation if its pairwise correlation coefficients remain unchanged under any common marginal transforms. For a bivariate case, we characterize all models of such a random vector via a certain combination of comonotonicity -- the strongest form of positive dependence -- and independence. In particular, we show that the class of exchangeable copulas with invariant correlation is precisely described by what we call positive Fr\'echet copulas. In the general multivariate case, we characterize the set of all invariant correlation matrices via the clique partition polytope. We also propose a positive regression dependent model that admits any prescribed invariant correlation matrix. This model turns out to be the joint distribution of samples with duplicate records. In this context, we provide an application of invariant correlation to the statistical inference in the presence of sample duplication. Finally, we show that all our characterization results of invariant correlation, except one special case, remain the same if the common marginal transforms are confined to the set of increasing ones.
We propose a data-driven, closure model for Reynolds-averaged Navier-Stokes (RANS) simulations that incorporates aleatoric, model uncertainty. The proposed closure consists of two parts. A parametric one, which utilizes previously proposed, neural-network-based tensor basis functions dependent on the rate of strain and rotation tensor invariants. This is complemented by latent, random variables which account for aleatoric model errors. A fully Bayesian formulation is proposed, combined with a sparsity-inducing prior in order to identify regions in the problem domain where the parametric closure is insufficient and where stochastic corrections to the Reynolds stress tensor are needed. Training is performed using sparse, indirect data, such as mean velocities and pressures, in contrast to the majority of alternatives that require direct Reynolds stress data. For inference and learning, a Stochastic Variational Inference scheme is employed, which is based on Monte Carlo estimates of the pertinent objective in conjunction with the reparametrization trick. This necessitates derivatives of the output of the RANS solver, for which we developed an adjoint-based formulation. In this manner, the parametric sensitivities from the differentiable solver can be combined with the built-in, automatic differentiation capability of the neural network library in order to enable an end-to-end differentiable framework. We demonstrate the capability of the proposed model to produce accurate, probabilistic, predictive estimates for all flow quantities, even in regions where model errors are present, on a separated flow in the backward-facing step benchmark problem.
The simulation hypothesis suggests that we live in a computer simulation. That notion has attracted significant scholarly and popular interest. This article explores the simulation hypothesis from a business perspective. Due to the lack of a name for a universe consistent with the simulation hypothesis, we propose the term simuverse. We argue that if we live in a simulation, there must be a business justification. Therefore, we ask: If we live in a simuverse, what is its business model? We identify and explore business model scenarios, such as simuverse as a project, service, or platform. We also explore business model pathways and risk management issues. The article contributes to the simulation hypothesis literature and is the first to provide a business model perspective on the simulation hypothesis. The article discusses theoretical and practical implications and identifies opportunities for future research related to sustainability, digital transformation, and Artificial Intelligence (AI).
We consider the bit complexity of computing Chow forms and their generalization to multiprojective spaces. We develop a deterministic algorithm using resultants and obtain a single exponential complexity upper bound. Earlier computational results for Chow forms were in the arithmetic complexity model, and our result represents the first bit complexity bound. We also extend our algorithm to Hurwitz forms in projective space, and explore connections between multiprojective Hurwitz forms and matroid theory. The motivation for our work comes from incidence geometry where intriguing computational algebra problems remain open.
Riemannian optimization is concerned with problems, where the independent variable lies on a smooth manifold. There is a number of problems from numerical linear algebra that fall into this category, where the manifold is usually specified by special matrix structures, such as orthogonality or definiteness. Following this line of research, we investigate tools for Riemannian optimization on the symplectic Stiefel manifold. We complement the existing set of numerical optimization algorithms with a Riemannian trust region method tailored to the symplectic Stiefel manifold. To this end, we derive a matrix formula for the Riemannian Hessian under a right-invariant metric. Moreover, we propose a novel retraction for approximating the Riemannian geodesics. Finally, we conduct a comparative study in which we juxtapose the performance of the Riemannian variants of the steepest descent, conjugate gradients, and trust region methods on selected matrix optimization problems that feature symplectic constraints.
The paper concerns problems of the recovery of differential operators from a noisy Fourier transform. In particular, optimal methods are obtained for the recovery of powers of generalized Laplace operators from a noisy Fourier transform in the $L_2$-metric.
We devise greedy heuristics tailored for synthesizing quantum circuits that implement a specified set of Pauli rotations. Our heuristics are designed to minimize either the count of entangling gates or the depth of entangling gates, and they can be adjusted to either maintain or loosen the ordering of rotations. We present benchmark results demonstrating a depth reduction of up to a factor of 4 compared to the current state-of-the-art heuristics for synthesizing Hamiltonian simulation circuits. We also show that these heuristics can be used to optimize generic quantum circuits by decomposing and resynthesizing them.
The quantum Fourier transform (QFT), which can be viewed as a reindexing of the discrete Fourier transform (DFT), has been shown to be compressible as a low-rank matrix product operator (MPO) or quantized tensor train (QTT) operator. However, the original proof of this fact does not furnish a construction of the MPO with a guaranteed error bound. Meanwhile, the existing practical construction of this MPO, based on the compression of a quantum circuit, is not as efficient as possible. We present a simple closed-form construction of the QFT MPO using the interpolative decomposition, with guaranteed near-optimal compression error for a given rank. This construction can speed up the application of the QFT and the DFT, respectively, in quantum circuit simulations and QTT applications. We also connect our interpolative construction to the approximate quantum Fourier transform (AQFT) by demonstrating that the AQFT can be viewed as an MPO constructed using a different interpolation scheme.
The continental plates of Earth are known to drift over a geophysical timescale, and their interactions have lead to some of the most spectacular geoformations of our planet while also causing natural disasters such as earthquakes and volcanic activity. Understanding the dynamics of interacting continental plates is thus significant. In this work, we present a fluid mechanical investigation of the plate motion, interaction, and dynamics. Through numerical experiments, we examine the coupling between a convective fluid and plates floating on top of it. With physical modeling, we show the coupling is both mechanical and thermal, leading to the thermal blanket effect: the floating plate is not only transported by the fluid flow beneath, it also prevents the heat from leaving the fluid, leading to a convective flow that further affects the plate motion. By adding several plates to such a coupled fluid-structure interaction, we also investigate how floating plates interact with each other and show that, under proper conditions, small plates can converge into a supercontinent.
Scatter plots are widely recognized as fundamental tools for illustrating the relationship between two numerical variables. Despite this, based on solid theoretical foundations, scatter plots generated from pairs of continuous random variables may not serve as reliable tools for assessing dependence. Sklar's Theorem implies that scatter plots created from ranked data are preferable for such analysis as they exclusively convey information pertinent to dependence. This is in stark contrast to conventional scatter plots, which also encapsulate information about the variables' marginal distributions. Such additional information is extraneous to dependence analysis and can obscure the visual interpretation of the variables' relationship. In this article, we delve into the theoretical underpinnings of these ranked data scatter plots, hereafter referred to as rank plots. We offer insights into interpreting the information they reveal and examine their connections with various association measures, including Pearson's and Spearman's correlation coefficients, as well as Schweizer-Wolff's measure of dependence. Furthermore, we introduce a novel graphical combination for dependence analysis, termed a dplot, and demonstrate its efficacy through real data examples.
An interesting case of the well-known Dataset Shift Problem is the classification of Electroencephalogram (EEG) signals in the context of Brain-Computer Interface (BCI). The non-stationarity of EEG signals can lead to poor generalisation performance in BCI classification systems used in different sessions, also from the same subject. In this paper, we start from the hypothesis that the Dataset Shift problem can be alleviated by exploiting suitable eXplainable Artificial Intelligence (XAI) methods to locate and transform the relevant characteristics of the input for the goal of classification. In particular, we focus on an experimental analysis of explanations produced by several XAI methods on an ML system trained on a typical EEG dataset for emotion recognition. Results show that many relevant components found by XAI methods are shared across the sessions and can be used to build a system able to generalise better. However, relevant components of the input signal also appear to be highly dependent on the input itself.