亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It is unclear how to restructure ownership when an asset is privately held, and there is uncertainty about the owners' subjective valuations. When ownership is divided equally between two owners, a commonly used mechanism is called a BMBY mechanism. This mechanism works as follows: each owner can initiate a BMBY by naming her price. Once an owner declares a price, the other chooses to sell his holdings or buy the shares of the initiator at the given price. This mechanism is simple and tractable; however, it does not elicit actual owner valuations, does not guarantee an efficient allocation, and, most importantly, is limited to an equal partnership of two owners. In this paper, we extend this rationale to a multi-owner setting. Our proposed mechanism elicits owner valuations truthfully. Additionally, our proposed mechanism exhibits several desirable traits: it is easy to implement, budget balanced, robust to collusion (weakly group strategyproof), individually rational, and ex-post efficient.

相關內容

ACM SIGACCESS Conference on Computers and Accessibility是為殘疾人和老年人提供與計算機相關的設計、評估、使用和教育研究的首要論壇。我們歡迎提交原始的高質量的有關計算和可訪問性的主題。今年,ASSETS首次將其范圍擴大到包括關于計算機無障礙教育相關主題的原創高質量研究。官網鏈接: · 可理解性 · MoDELS · 縮放 · Performer ·
2024 年 3 月 11 日

Argument Structure Constructions (ASCs) are one of the most well-studied construction groups, providing a unique opportunity to demonstrate the usefulness of Construction Grammar (CxG). For example, the caused-motion construction (CMC, ``She sneezed the foam off her cappuccino'') demonstrates that constructions must carry meaning, otherwise the fact that ``sneeze'' in this context causes movement cannot be explained. We form the hypothesis that this remains challenging even for state-of-the-art Large Language Models (LLMs), for which we devise a test based on substituting the verb with a prototypical motion verb. To be able to perform this test at statistically significant scale, in the absence of adequate CxG corpora, we develop a novel pipeline of NLP-assisted collection of linguistically annotated text. We show how dependency parsing and GPT-3.5 can be used to significantly reduce annotation cost and thus enable the annotation of rare phenomena at scale. We then evaluate GPT, Gemini, Llama2 and Mistral models for their understanding of the CMC using the newly collected corpus. We find that all models struggle with understanding the motion component that the CMC adds to a sentence.

Data augmentations are useful in closing the sim-to-real domain gap when training on synthetic data. This is because they widen the training data distribution, thus encouraging the model to generalize better to other domains. Many image augmentation techniques exist, parametrized by different settings, such as strength and probability. This leads to a large space of different possible augmentation policies. Some policies work better than others for overcoming the sim-to-real gap for specific datasets, and it is unclear why. This paper presents two different interpretable metrics that can be combined to predict how well a certain augmentation policy will work for a specific sim-to-real setting, focusing on object detection. We validate our metrics by training many models with different augmentation policies and showing a strong correlation with performance on real data. Additionally, we introduce GeneticAugment, a genetic programming method that can leverage these metrics to automatically design an augmentation policy for a specific dataset without needing to train a model.

We study the problem of identifying the unknown intervention targets in structural causal models where we have access to heterogeneous data collected from multiple environments. The unknown intervention targets are the set of endogenous variables whose corresponding exogenous noises change across the environments. We propose a two-phase approach which in the first phase recovers the exogenous noises corresponding to unknown intervention targets whose distributions have changed across environments. In the second phase, the recovered noises are matched with the corresponding endogenous variables. For the recovery phase, we provide sufficient conditions for learning these exogenous noises up to some component-wise invertible transformation. For the matching phase, under the causal sufficiency assumption, we show that the proposed method uniquely identifies the intervention targets. In the presence of latent confounders, the intervention targets among the observed variables cannot be determined uniquely. We provide a candidate intervention target set which is a superset of the true intervention targets. Our approach improves upon the state of the art as the returned candidate set is always a subset of the target set returned by previous work. Moreover, we do not require restrictive assumptions such as linearity of the causal model or performing invariance tests to learn whether a distribution is changing across environments which could be highly sample inefficient. Our experimental results show the effectiveness of our proposed algorithm in practice.

It is believed that in knowledge distillation (KD), the role of the teacher is to provide an estimate for the unknown Bayes conditional probability distribution (BCPD) to be used in the student training process. Conventionally, this estimate is obtained by training the teacher using maximum log-likelihood (MLL) method. To improve this estimate for KD, in this paper we introduce the concept of conditional mutual information (CMI) into the estimation of BCPD and propose a novel estimator called the maximum CMI (MCMI) method. Specifically, in MCMI estimation, both the log-likelihood and CMI of the teacher are simultaneously maximized when the teacher is trained. Through Eigen-CAM, it is further shown that maximizing the teacher's CMI value allows the teacher to capture more contextual information in an image cluster. Via conducting a thorough set of experiments, we show that by employing a teacher trained via MCMI estimation rather than one trained via MLL estimation in various state-of-the-art KD frameworks, the student's classification accuracy consistently increases, with the gain of up to 3.32\%. This suggests that the teacher's BCPD estimate provided by MCMI method is more accurate than that provided by MLL method. In addition, we show that such improvements in the student's accuracy are more drastic in zero-shot and few-shot settings. Notably, the student's accuracy increases with the gain of up to 5.72\% when 5\% of the training samples are available to the student (few-shot), and increases from 0\% to as high as 84\% for an omitted class (zero-shot). The code is available at \url{//github.com/iclr2024mcmi/ICLRMCMI}.

This work is an attempt to introduce a comprehensive benchmark for Arabic speech recognition, specifically tailored to address the challenges of telephone conversations in Arabic language. Arabic, characterized by its rich dialectal diversity and phonetic complexity, presents a number of unique challenges for automatic speech recognition (ASR) systems. These challenges are further amplified in the domain of telephone calls, where audio quality, background noise, and conversational speech styles negatively affect recognition accuracy. Our work aims to establish a robust benchmark that not only encompasses the broad spectrum of Arabic dialects but also emulates the real-world conditions of call-based communications. By incorporating diverse dialectical expressions and accounting for the variable quality of call recordings, this benchmark seeks to provide a rigorous testing ground for the development and evaluation of ASR systems capable of navigating the complexities of Arabic speech in telephonic contexts. This work also attempts to establish a baseline performance evaluation using state-of-the-art ASR technologies.

Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司