亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite the many advances in the use of weakly-compressible smoothed particle hydrodynamics (SPH) for the simulation of incompressible fluid flow, it is still challenging to obtain second-order convergence numerically. In this paper we perform a systematic numerical study of convergence and accuracy of kernel-based approximation, discretization operators, and weakly-compressible SPH (WCSPH) schemes. We explore the origins of the errors and issues preventing second-order convergence. Based on the study, we propose several new variations of the basic WCSPH scheme that are all second-order accurate. Additionally, we investigate the linear and angular momentum conservation property of the WCSPH schemes. Our results show that one may construct accurate WCSPH schemes that demonstrate second-order convergence through a judicious choice of kernel, smoothing length, and discretization operators in the discretization of the governing equations.

相關內容

This paper introduces a novel approach to compute the numerical fluxes at the cell boundaries for a cell-centered conservative numerical scheme. Explicit gradients used in deriving the reconstruction polynomials are replaced by high-order gradients computed by compact finite differences, referred to as implicit gradients in this paper. The new approach has superior dispersion and dissipation properties in comparison to the compact reconstruction approach. A problem-independent shock capturing approach via Boundary Variation Diminishing (BVD) algorithm is used to suppress oscillations for the simulation of flows with shocks and material interfaces. Several numerical test cases are carried out to verify the proposed method's capability using the implicit gradient method for compressible flows.

A novel discretization is presented for forward-backward stochastic differential equations (FBSDE) with differentiable coefficients, simultaneously solving the BSDE and its Malliavin sensitivity problem. The control process is estimated by the corresponding linear BSDE driving the trajectories of the Malliavin derivatives of the solution pair, which implies the need to provide accurate $\Gamma$ estimates. The approximation is based on a merged formulation given by the Feynman-Kac formulae and the Malliavin chain rule. The continuous time dynamics is discretized with a theta-scheme. In order to allow for an efficient numerical solution of the arising semi-discrete conditional expectations in possibly high-dimensions, it is fundamental that the chosen approach admits to differentiable estimates. Two fully-implementable schemes are considered: the BCOS method as a reference in the one-dimensional framework and neural network Monte Carlo regressions in case of high-dimensional problems, similarly to the recently emerging class of Deep BSDE methods [Han et al. (2018), Hur\'e et al. (2020)]. An error analysis is carried out to show $L^2$ convergence of order $1/2$, under standard Lipschitz assumptions and additive noise in the forward diffusion. Numerical experiments are provided for a range of different semi- and quasi-linear equations up to $50$ dimensions, demonstrating that the proposed scheme yields a significant improvement in the control estimations.

Interacting particle populations undergoing repeated mutation and fitness-based selection steps model genetic evolution, and describe a broad class of sequential Monte Carlo methods. The genealogical tree embedded into the system is important in both applications. Under neutrality, when fitnesses of particles and their parents are independent, rescaled genealogies are known to converge to Kingman's coalescent. Recent work established convergence under non-neutrality, but only for finite-dimensional distributions. We prove weak converge of non-neutral genealogies on the space of cadlag paths under standard assumptions, enabling analysis of the whole genealogical tree. The proof relies on a conditional coupling in a random environment.

This work deals with a number of questions relative to the discrete and continuous adjoint fields associated with the compressible Euler equations and classical aerodynamic functions. The consistency of the discrete adjoint equations with the corresponding continuous adjoint partial differential equation is one of them. It is has been established or at least discussed only for a handful of numerical schemes and a contribution of this article is to give the adjoint consistency conditions for the 2D Jameson-Schmidt-Turkel scheme in cell-centred finite-volume formulation. The consistency issue is also studied here from a new heuristic point of view by discretizing the continuous adjoint equation for the discrete flow and adjoint fields. Both points of view prove to provide useful information. Besides, it has been often noted that discrete or continuous inviscid lift and drag adjoint exhibit numerical divergence close to the wall and stagnation streamline for a wide range of subsonic and transonic flow conditions. This is analyzed here using the physical source term perturbation method introduced in reference [Giles and Pierce, AIAA Paper 97-1850, 1997]. With this point of view, the fourth physical source term of appears to be the only one responsible for this behavior. It is also demonstrated that the numerical divergence of the adjoint variables corresponds to the response of the flow to the convected increment of stagnation pressure and diminution of entropy created at the source and the resulting change in lift and drag.

The dispersion error is often the dominant error for computed solutions of wave propagation problems with high-frequency components. In this paper, we define and give explicit examples of $\alpha$-dispersion-relation-preserving schemes. These are dual-pair finite-difference schemes for systems of hyperbolic partial differential equations which preserve the dispersion-relation of the continuous problem uniformly to an $\alpha \%$-error tolerance. We give a general framework to design provably stable finite difference operators that preserve the dispersion relation for hyperbolic systems such as the elastic wave equation. The operators we derive here can resolve the highest frequency ($\pi$-mode) present on any equidistant grid at a tolerance of $5\%$ error. This significantly improves on the current standard that have a tolerance of $100 \%$ error.

One- and multi-dimensional stochastic Maxwell equations with additive noise are considered in this paper. It is known that such system can be written in the multi-symplectic structure, and the stochastic energy increases linearly in time. High order discontinuous Galerkin methods are designed for the stochastic Maxwell equations with additive noise, and we show that the proposed methods satisfy the discrete form of the stochastic energy linear growth property and preserve the multi-symplectic structure on the discrete level. Optimal error estimate of the semi-discrete DG method is also analyzed. The fully discrete methods are obtained by coupling with symplectic temporal discretizations. One- and two-dimensional numerical results are provided to demonstrate the performance of the proposed methods, and optimal error estimates and linear growth of the discrete energy can be observed for all cases.

In this work we propose reduced order methods as a reliable strategy to efficiently solve parametrized optimal control problems governed by shallow waters equations in a solution tracking setting. The physical parametrized model we deal with is nonlinear and time dependent: this leads to very time consuming simulations which can be unbearable e.g. in a marine environmental monitoring plan application. Our aim is to show how reduced order modelling could help in studying different configurations and phenomena in a fast way. After building the optimality system, we rely on a POD-Galerkin reduction in order to solve the optimal control problem in a low dimensional reduced space. The presented theoretical framework is actually suited to general nonlinear time dependent optimal control problems. The proposed methodology is finally tested with a numerical experiment: the reduced optimal control problem governed by shallow waters equations reproduces the desired velocity and height profiles faster than the standard model, still remaining accurate.

We provide a control-theoretic perspective on optimal tensor algorithms for minimizing a convex function in a finite-dimensional Euclidean space. Given a function $\Phi: \mathbb{R}^d \rightarrow \mathbb{R}$ that is convex and twice continuously differentiable, we study a closed-loop control system that is governed by the operators $\nabla \Phi$ and $\nabla^2 \Phi$ together with a feedback control law $\lambda(\cdot)$ satisfying the algebraic equation $(\lambda(t))^p\|\nabla\Phi(x(t))\|^{p-1} = \theta$ for some $\theta \in (0, 1)$. Our first contribution is to prove the existence and uniqueness of a local solution to this system via the Banach fixed-point theorem. We present a simple yet nontrivial Lyapunov function that allows us to establish the existence and uniqueness of a global solution under certain regularity conditions and analyze the convergence properties of trajectories. The rate of convergence is $O(1/t^{(3p+1)/2})$ in terms of objective function gap and $O(1/t^{3p})$ in terms of squared gradient norm. Our second contribution is to provide two algorithmic frameworks obtained from discretization of our continuous-time system, one of which generalizes the large-step A-HPE framework and the other of which leads to a new optimal $p$-th order tensor algorithm. While our discrete-time analysis can be seen as a simplification and generalization of~\citet{Monteiro-2013-Accelerated}, it is largely motivated by the aforementioned continuous-time analysis, demonstrating the fundamental role that the feedback control plays in optimal acceleration and the clear advantage that the continuous-time perspective brings to algorithmic design. A highlight of our analysis is that we show that all of the $p$-th order optimal tensor algorithms that we discuss minimize the squared gradient norm at a rate of $O(k^{-3p})$, which complements the recent analysis.

Boussinesq type equations have been widely studied to model the surface water wave. In this paper, we consider the abcd Boussinesq system which is a family of Boussinesq type equations including many well-known models such as the classical Boussinesq system, BBM-BBM system, Bona-Smith system etc. We propose local discontinuous Galerkin (LDG) methods, with carefully chosen numerical fluxes, to numerically solve this abcd Boussinesq system. The main focus of this paper is to rigorously establish a priori error estimate of the proposed LDG methods for a wide range of the parameters a, b, c, d. Numerical experiments are shown to test the convergence rates, and to demonstrate that the proposed methods can simulate the head-on collision of traveling wave and finite time blow-up behavior well.

We present an energy-preserving mechanic formulation for dynamic quasi-brittle fracture in an Eulerian-Lagrangian formulation, where a second-order phase-field equation controls the damage evolution. The numerical formulation adapts in space and time to bound the errors, solving the mesh-bias issues these models typically suffer. The time-step adaptivity estimates the temporal truncation error of the partial differential equation that governs the solid equilibrium. The second-order generalized-$\alpha$ time-marching scheme evolves the dynamic system. We estimate the temporal error by extrapolating a first-order approximation of the present time-step solution using previous ones with backward difference formulas; the estimate compares the extrapolation with the time-marching solution. We use an adaptive scheme built on a residual minimization formulation in space. We estimate the spatial error by enriching the discretization with elemental bubbles; then, we localize an error indicator norm to guide the mesh refinement as the fracture propagates. The combined space and time adaptivity allows us to use low-order linear elements in problems involving complex stress paths. We efficiently and robustly use low-order spatial discretizations while avoiding mesh bias in structured and unstructured meshes. We demonstrate the method's efficiency with numerical experiments that feature dynamic crack branching, where the capacity of the adaptive space-time scheme is apparent. The adaptive method delivers accurate and reproducible crack paths on meshes with fewer elements.

北京阿比特科技有限公司