Large Language Models (LLMs) are attracting significant research attention due to their instruction-following abilities, allowing users and developers to leverage LLMs for a variety of tasks. However, LLMs are vulnerable to prompt-injection attacks: a class of attacks that hijack the model's instruction-following abilities, changing responses to prompts to undesired, possibly malicious ones. In this work, we introduce Jatmo, a method for generating task-specific models resilient to prompt-injection attacks. Jatmo leverages the fact that LLMs can only follow instructions once they have undergone instruction tuning. It harnesses a teacher instruction-tuned model to generate a task-specific dataset, which is then used to fine-tune a base model (i.e., a non-instruction-tuned model). Jatmo only needs a task prompt and a dataset of inputs for the task: it uses the teacher model to generate outputs. For situations with no pre-existing datasets, Jatmo can use a single example, or in some cases none at all, to produce a fully synthetic dataset. Our experiments on seven tasks show that Jatmo models provide similar quality of outputs on their specific task as standard LLMs, while being resilient to prompt injections. The best attacks succeeded in less than 0.5% of cases against our models, versus 87% success rate against GPT-3.5-Turbo. We release Jatmo at //github.com/wagner-group/prompt-injection-defense.
Large Language Models (LLMs) demonstrate remarkable potential across various domains; however, they exhibit a significant performance gap in Information Extraction (IE). Note that high-quality instruction data is the vital key for enhancing the specific capabilities of LLMs, while current IE datasets tend to be small in scale, fragmented, and lack standardized schema. To this end, we introduce IEPile, a comprehensive bilingual (English and Chinese) IE instruction corpus, which contains approximately 0.32B tokens. We construct IEPile by collecting and cleaning 33 existing IE datasets, and introduce schema-based instruction generation to unearth a large-scale corpus. Experimental results on LLaMA and Baichuan demonstrate that using IEPile can enhance the performance of LLMs for IE, especially the zero-shot generalization. We open-source the resource and pre-trained models, hoping to provide valuable support to the NLP community.
Large Language Models (LLMs) such as GPT and Llama have demonstrated significant achievements in summarization tasks but struggle with factual inaccuracies, a critical issue in clinical NLP applications where errors could lead to serious consequences. To counter the high costs and limited availability of expert-annotated data for factual alignment, this study introduces an innovative pipeline that utilizes GPT-3.5 and GPT-4 to generate high-quality feedback aimed at enhancing factual consistency in clinical note summarization. Our research primarily focuses on edit feedback, mirroring the practical scenario in which medical professionals refine AI system outputs without the need for additional annotations. Despite GPT's proven expertise in various clinical NLP tasks, such as the Medical Licensing Examination, there is scant research on its capacity to deliver expert-level edit feedback for improving weaker LMs or LLMs generation quality. This work leverages GPT's advanced capabilities in clinical NLP to offer expert-level edit feedback. Through the use of two distinct alignment algorithms (DPO and SALT) based on GPT edit feedback, our goal is to reduce hallucinations and align closely with medical facts, endeavoring to narrow the divide between AI-generated content and factual accuracy. This highlights the substantial potential of GPT edits in enhancing the alignment of clinical factuality.
Gait recognition is one of the most promising video-based biometric technologies. The edge of silhouettes and motion are the most informative feature and previous studies have explored them separately and achieved notable results. However, due to occlusions and variations in viewing angles, their gait recognition performance is often affected by the predefined spatial segmentation strategy. Moreover, traditional temporal pooling usually neglects distinctive temporal information in gait. To address the aforementioned issues, we propose a novel gait recognition framework, denoted as GaitASMS, which can effectively extract the adaptive structured spatial representations and naturally aggregate the multi-scale temporal information. The Adaptive Structured Representation Extraction Module (ASRE) separates the edge of silhouettes by using the adaptive edge mask and maximizes the representation in semantic latent space. Moreover, the Multi-Scale Temporal Aggregation Module (MSTA) achieves effective modeling of long-short-range temporal information by temporally aggregated structure. Furthermore, we propose a new data augmentation, denoted random mask, to enrich the sample space of long-term occlusion and enhance the generalization of the model. Extensive experiments conducted on two datasets demonstrate the competitive advantage of proposed method, especially in complex scenes, i.e. BG and CL. On the CASIA-B dataset, GaitASMS achieves the average accuracy of 93.5\% and outperforms the baseline on rank-1 accuracies by 3.4\% and 6.3\%, respectively, in BG and CL. The ablation experiments demonstrate the effectiveness of ASRE and MSTA. The source code is available at //github.com/YanSungithub/GaitASMS.
The widespread adoption of implicit neural representations, especially Neural Radiance Fields (NeRF), highlights a growing need for editing capabilities in implicit 3D models, essential for tasks like scene post-processing and 3D content creation. Despite previous efforts in NeRF editing, challenges remain due to limitations in editing flexibility and quality. The key issue is developing a neural representation that supports local edits for real-time updates. Current NeRF editing methods, offering pixel-level adjustments or detailed geometry and color modifications, are mostly limited to static scenes. This paper introduces SealD-NeRF, an extension of Seal-3D for pixel-level editing in dynamic settings, specifically targeting the D-NeRF network. It allows for consistent edits across sequences by mapping editing actions to a specific timeframe, freezing the deformation network responsible for dynamic scene representation, and using a teacher-student approach to integrate changes.
Large Language Models (LLMs) face threats from unsafe prompts. Existing methods for detecting unsafe prompts are primarily online moderation APIs or finetuned LLMs. These strategies, however, often require extensive and resource-intensive data collection and training processes. In this study, we propose GradSafe, which effectively detects unsafe prompts by scrutinizing the gradients of safety-critical parameters in LLMs. Our methodology is grounded in a pivotal observation: the gradients of an LLM's loss for unsafe prompts paired with compliance response exhibit similar patterns on certain safety-critical parameters. In contrast, safe prompts lead to markedly different gradient patterns. Building on this observation, GradSafe analyzes the gradients from prompts (paired with compliance responses) to accurately detect unsafe prompts. We show that GradSafe, applied to Llama-2 without further training, outperforms Llama Guard, despite its extensive finetuning with a large dataset, in detecting unsafe prompts. This superior performance is consistent across both zero-shot and adaptation scenarios, as evidenced by our evaluations on the ToxicChat and XSTest. The source code is available at //github.com/xyq7/GradSafe.
Neural Information Retrieval (NIR) has significantly improved upon heuristic-based IR systems. Yet, failures remain frequent, the models used often being unable to retrieve documents relevant to the user's query. We address this challenge by proposing a lightweight abstention mechanism tailored for real-world constraints, with particular emphasis placed on the reranking phase. We introduce a protocol for evaluating abstention strategies in a black-box scenario, demonstrating their efficacy, and propose a simple yet effective data-driven mechanism. We provide open-source code for experiment replication and abstention implementation, fostering wider adoption and application in diverse contexts.
Large Language Models (LLMs) face significant deployment challenges due to their substantial memory requirements and the computational demands of auto-regressive text generation process. This paper addresses these challenges by focusing on the quantization of LLMs, a technique that reduces memory consumption by converting model parameters and activations into low-bit integers. We critically analyze the existing quantization approaches, identifying their limitations in balancing the accuracy and efficiency of the quantized LLMs. To advance beyond these limitations, we propose WKVQuant, a PTQ framework especially designed for quantizing weights and the key/value (KV) cache of LLMs. Specifically, we incorporates past-only quantization to improve the computation of attention. Additionally, we introduce two-dimensional quantization strategy to handle the distribution of KV cache, along with a cross-block reconstruction regularization for parameter optimization. Experiments show that WKVQuant achieves almost comparable memory savings to weight-activation quantization, while also approaching the performance of weight-only quantization.
As Large Language Models (LLMs) rapidly evolve, their influence in science is becoming increasingly prominent. The emerging capabilities of LLMs in task generalization and free-form dialogue can significantly advance fields like chemistry and biology. However, the field of single-cell biology, which forms the foundational building blocks of living organisms, still faces several challenges. High knowledge barriers and limited scalability in current methods restrict the full exploitation of LLMs in mastering single-cell data, impeding direct accessibility and rapid iteration. To this end, we introduce ChatCell, which signifies a paradigm shift by facilitating single-cell analysis with natural language. Leveraging vocabulary adaptation and unified sequence generation, ChatCell has acquired profound expertise in single-cell biology and the capability to accommodate a diverse range of analysis tasks. Extensive experiments further demonstrate ChatCell's robust performance and potential to deepen single-cell insights, paving the way for more accessible and intuitive exploration in this pivotal field. Our project homepage is available at //zjunlp.github.io/project/ChatCell.
In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.