Self-Sovereign Identity (SSI) is a new distributed method for identity management, commonly used to address the problem that users are lack of control over their identities. However, the excessive pursuit of self-sovereignty in the most existing SSI schemes hinders sanctions against attackers. To deal with the malicious behavior, a few SSI schemes introduce accountability mechanisms, but they sacrifice users' privacy. What's more, the digital identities (static strings or updatable chains) in the existing SSI schemes are as inputs to a third-party executable program (mobile app, smart contract, etc.) to achieve identity reading, storing and proving, users' self-sovereignty are weakened. To solve the above problems, we present a new self-sovereign identity scheme to strike a balance between privacy and accountability and get rid of the dependence on the third-party program. In our scheme, one and only individual-specific executable code is generated as a digital avatar-i for each human to interact with others in cyberspace without a third-party program, in which the embedding of biometrics enhances uniqueness and user control over their identity. In addition, a joint accountability mechanism, which is based on the shamir (t, n) threshold algorithm and a consortium blockchain, is designed to restrict the power of each regulatory authority and protect users' privacy. Finally, we analyze the security, SSI properties and conduct detailed experiments in term of the cost of computation, storage and blockchain gas. The analysis results indicate that our scheme resists the known attacks and fulfills all the six SSI properties. Compared with the state-of-the-art schemes, the extensive experiment results show that the cost is larger in server storage, blockchain storage and blockchain gas, but is still low enough for practical situations.
We present an aggregation scheme that increases power in randomized controlled trials and quasi-experiments when the intervention possesses a robust and well-articulated theory of change. Longitudinal data analyzing interventions often include multiple observations on individuals, some of which may be more likely to manifest a treatment effect than others. An intervention's theory of change provides guidance as to which of those observations are best situated to exhibit that treatment effect. Our power-maximizing weighting for repeated-measurements with delayed-effects scheme, PWRD aggregation, converts the theory of change into a test statistic with improved asymptotic relative efficiency, delivering tests with greater statistical power. We illustrate this method on an IES-funded cluster randomized trial testing the efficacy of a reading intervention designed to assist early elementary students at risk of falling behind their peers. The salient theory of change holds program benefits to be delayed and non-uniform, experienced after a student's performance stalls. In this instance, the PWRD technique's effect on power is found to be comparable to that of doubling the number of clusters in the experiment.
Skeleton-based two-person interaction recognition has been gaining increasing attention as advancements are made in pose estimation and graph convolutional networks. Although the accuracy has been gradually improving, the increasing computational complexity makes it more impractical for a real-world environment. There is still room for accuracy improvement as the conventional methods do not fully represent the relationship between inter-body joints. In this paper, we propose a lightweight model for accurately recognizing two-person interactions. In addition to the architecture, which incorporates middle fusion, we introduce a factorized convolution technique to reduce the weight parameters of the model. We also introduce a network stream that accounts for relative distance changes between inter-body joints to improve accuracy. Experiments using two large-scale datasets, NTU RGB+D 60 and 120, show that our method simultaneously achieved the highest accuracy and relatively low computational complexity compared with the conventional methods.
Due to the pandemic of COVID-19, many university courses had to abruptly transform to enable remote teaching. Adjusting courses on embedded systems and micro-controllers was extra challenging since interaction with real hardware is their integral part. We start by comparing our experience with four basic alternatives of teaching embedded systems: 1) interacting with hardware at school, 2) having remote access to hardware, 3) lending hardware to students for at-home work and 4) virtualizing hardware. Afterward, we evaluate in detail our experience of the fast transition from traditional, offline at-school hardware programming course to using remote access to real hardware present in the lab. The somewhat unusual remote hardware access approach turned out to be a fully viable alternative for teaching embedded systems, enabling a relatively low-effort transition. Our setup is based on existing solutions and stable open technologies without the need for custom-developed applications that require high maintenance. We evaluate the experience of both the students and teachers and condense takeaways for future courses. The specific environment setup is available online as an inspiration for others.
Previous studies have demonstrated that code intelligence models are sensitive to program transformation among which identifier renaming is particularly easy to apply and effective. By simply renaming one identifier in source code, the models would output completely different results. The prior research generally mitigates the problem by generating more training samples. Such an approach is less than ideal since its effectiveness depends on the quantity and quality of the generated samples. Different from these studies, we are devoted to adjusting models for explicitly distinguishing the influence of identifier names on the results, called naming bias in this paper, and thereby making the models robust to identifier renaming. Specifically, we formulate the naming bias with a structural causal model (SCM), and propose a counterfactual reasoning based framework named CARBON for eliminating the naming bias in neural code comprehension. CARBON explicitly captures the naming bias through multi-task learning in the training stage, and reduces the bias by counterfactual inference in the inference stage. We evaluate CARBON on three neural code comprehension tasks, including function naming, defect detection and code classification. Experiment results show that CARBON achieves relatively better performance (e.g., +0.5% on the function naming task at F1 score) than the baseline models on the original benchmark datasets, and significantly improvement (e.g., +37.9% on the function naming task at F1 score) on the datasets with identifiers renamed. The proposed framework provides a causal view for improving the robustness of code intelligence models.
Millimeter wave (mmWave) will play a significant role as a 5G candidate in facing the growing demand of enormous data rate in the near future. The conventional mmWave standard, IEEE 802.11ad, considers establishing only one mmWave link in wireless local area network (WLAN) to provide multi Gbps data rate. But, mmWave has a tenuous channel which hinders it from providing such rate. Hence, it's necessary to establish multiple mmWave links simultaneously by deploying a multiple number of mmWave access points (APs) in 5G networks. Unfortunately, applying conventional standard without any modifications for mmWave concurrent transmission impedes mmWave APs from selecting optimum mmWave concurrent links. Because IEEE 802.11ad standard associates the user equipment (UEs) to mmWave APs using the link that has the maximum received power without considering mutual interference between simultaneous links. In this paper, a joint proportional fairness scheduling (JPFS) optimization problem for establishing optimum mmWave concurrent transmission links is formulated. And, to find a solution to this non-polynomial (NP) time problem, we use exhaustive search (ES) scheme. Numerical simulation proves the effectiveness of using the ES scheme to improve the system performance.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.
Entity linking (EL) for the rapidly growing short text (e.g. search queries and news titles) is critical to industrial applications. Most existing approaches relying on adequate context for long text EL are not effective for the concise and sparse short text. In this paper, we propose a novel framework called Multi-turn Multiple-choice Machine reading comprehension (M3}) to solve the short text EL from a new perspective: a query is generated for each ambiguous mention exploiting its surrounding context, and an option selection module is employed to identify the golden entity from candidates using the query. In this way, M3 framework sufficiently interacts limited context with candidate entities during the encoding process, as well as implicitly considers the dissimilarities inside the candidate bunch in the selection stage. In addition, we design a two-stage verifier incorporated into M3 to address the commonly existed unlinkable problem in short text. To further consider the topical coherence and interdependence among referred entities, M3 leverages a multi-turn fashion to deal with mentions in a sequence manner by retrospecting historical cues. Evaluation shows that our M3 framework achieves the state-of-the-art performance on five Chinese and English datasets for the real-world short text EL.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.
Textual entailment is a fundamental task in natural language processing. Most approaches for solving the problem use only the textual content present in training data. A few approaches have shown that information from external knowledge sources like knowledge graphs (KGs) can add value, in addition to the textual content, by providing background knowledge that may be critical for a task. However, the proposed models do not fully exploit the information in the usually large and noisy KGs, and it is not clear how it can be effectively encoded to be useful for entailment. We present an approach that complements text-based entailment models with information from KGs by (1) using Personalized PageR- ank to generate contextual subgraphs with reduced noise and (2) encoding these subgraphs using graph convolutional networks to capture KG structure. Our technique extends the capability of text models exploiting structural and semantic information found in KGs. We evaluate our approach on multiple textual entailment datasets and show that the use of external knowledge helps improve prediction accuracy. This is particularly evident in the challenging BreakingNLI dataset, where we see an absolute improvement of 5-20% over multiple text-based entailment models.