With the aim of further enabling the exploitation of intentional impacts in robotic manipulation, a control framework is presented that directly tackles the challenges posed by tracking control of robotic manipulators that are tasked to perform nominally simultaneous impacts. This framework is an extension of the reference spreading control framework, in which overlapping ante- and post-impact references that are consistent with impact dynamics are defined. In this work, such a reference is constructed starting from a teleoperation-based approach. By using the corresponding ante- and post-impact control modes in the scope of a quadratic programming control approach, peaking of the velocity error and control inputs due to impacts is avoided while maintaining high tracking performance. With the inclusion of a novel interim mode, we aim to also avoid input peaks and steps when uncertainty in the environment causes a series of unplanned single impacts to occur rather than the planned simultaneous impact. This work in particular presents for the first time an experimental evaluation of reference spreading control on a robotic setup, showcasing its robustness against uncertainty in the environment compared to three baseline control approaches.
Reliable predictions of critical phenomena, such as weather, wildfires and epidemics often rely on models described by Partial Differential Equations (PDEs). However, simulations that capture the full range of spatio-temporal scales described by such PDEs are often prohibitively expensive. Consequently, coarse-grained simulations are usually deployed that adopt various heuristics and empirical closure terms to account for the missing information. We propose a novel and systematic approach for identifying closures in under-resolved PDEs using grid-based Reinforcement Learning. This formulation incorporates inductive bias and exploits locality by deploying a central policy represented efficiently by a Fully Convolutional Network (FCN). We demonstrate the capabilities and limitations of our framework through numerical solutions of the advection equation and the Burgers' equation. Our results show accurate predictions for in- and out-of-distribution test cases as well as a significant speedup compared to resolving all scales.
Accurate modeling of the diverse and dynamic interests of users remains a significant challenge in the design of personalized recommender systems. Existing user modeling methods, like single-point and multi-point representations, have limitations w.r.t.\ accuracy, diversity, and adaptability. To overcome these deficiencies, we introduce density-based user representations (DURs), a novel method that leverages Gaussian process regression (GPR) for effective multi-interest recommendation and retrieval. Our approach, GPR4DUR, exploits DURs to capture user interest variability without manual tuning, incorporates uncertainty-awareness, and scales well to large numbers of users. Experiments using real-world offline datasets confirm the adaptability and efficiency of GPR4DUR, while online experiments with simulated users demonstrate its ability to address the exploration-exploitation trade-off by effectively utilizing model uncertainty.
Among the research topics in multi-agent learning, mixed-motive cooperation is one of the most prominent challenges, primarily due to the mismatch between individual and collective goals. The cutting-edge research is focused on incorporating domain knowledge into rewards and introducing additional mechanisms to incentivize cooperation. However, these approaches often face shortcomings such as the effort on manual design and the absence of theoretical groundings. To close this gap, we model the mixed-motive game as a differentiable game for the ease of illuminating the learning dynamics towards cooperation. More detailed, we introduce a novel optimization method named \textbf{\textit{A}}ltruistic \textbf{\textit{G}}radient \textbf{\textit{A}}djustment (\textbf{\textit{AgA}}) that employs gradient adjustments to progressively align individual and collective objectives. Furthermore, we theoretically prove that AgA effectively attracts gradients to stable fixed points of the collective objective while considering individual interests, and we validate these claims with empirical evidence. We evaluate the effectiveness of our algorithm AgA through benchmark environments for testing mixed-motive collaboration with small-scale agents such as the two-player public good game and the sequential social dilemma games, Cleanup and Harvest, as well as our self-developed large-scale environment in the game StarCraft II.
In the rapidly evolving field of machine learning, adversarial attacks present a significant challenge to model robustness and security. Decision-based attacks, which only require feedback on the decision of a model rather than detailed probabilities or scores, are particularly insidious and difficult to defend against. This work introduces L-AutoDA (Large Language Model-based Automated Decision-based Adversarial Attacks), a novel approach leveraging the generative capabilities of Large Language Models (LLMs) to automate the design of these attacks. By iteratively interacting with LLMs in an evolutionary framework, L-AutoDA automatically designs competitive attack algorithms efficiently without much human effort. We demonstrate the efficacy of L-AutoDA on CIFAR-10 dataset, showing significant improvements over baseline methods in both success rate and computational efficiency. Our findings underscore the potential of language models as tools for adversarial attack generation and highlight new avenues for the development of robust AI systems.
The opacity of AI models necessitates both validation and evaluation before their integration into services. To investigate these models, explainable AI (XAI) employs methods that elucidate the relationship between input features and output predictions. The operations of XAI extend beyond the execution of a single algorithm, involving a series of activities that include preprocessing data, adjusting XAI to align with model parameters, invoking the model to generate predictions, and summarizing the XAI results. Adversarial attacks are well-known threats that aim to mislead AI models. The assessment complexity, especially for XAI, increases when open-source AI models are subject to adversarial attacks, due to various combinations. To automate the numerous entities and tasks involved in XAI-based assessments, we propose a cloud-based service framework that encapsulates computing components as microservices and organizes assessment tasks into pipelines. The current XAI tools are not inherently service-oriented. This framework also integrates open XAI tool libraries as part of the pipeline composition. We demonstrate the application of XAI services for assessing five quality attributes of AI models: (1) computational cost, (2) performance, (3) robustness, (4) explanation deviation, and (5) explanation resilience across computer vision and tabular cases. The service framework generates aggregated analysis that showcases the quality attributes for more than a hundred combination scenarios.
Learning a single universal policy that can perform a diverse set of manipulation tasks is a promising new direction in robotics. However, existing techniques are limited to learning policies that can only perform tasks that are encountered during training, and require a large number of demonstrations to learn new tasks. Humans, on the other hand, often can learn a new task from a single unannotated demonstration. In this work, we propose the Invariance-Matching One-shot Policy Learning (IMOP) algorithm. In contrast to the standard practice of learning the end-effector's pose directly, IMOP first learns invariant regions of the state space for a given task, and then computes the end-effector's pose through matching the invariant regions between demonstrations and test scenes. Trained on the 18 RLBench tasks, IMOP achieves a success rate that outperforms the state-of-the-art consistently, by 4.5% on average over the 18 tasks. More importantly, IMOP can learn a novel task from a single unannotated demonstration, and without any fine-tuning, and achieves an average success rate improvement of $11.5\%$ over the state-of-the-art on 22 novel tasks selected across nine categories. IMOP can also generalize to new shapes and learn to manipulate objects that are different from those in the demonstration. Further, IMOP can perform one-shot sim-to-real transfer using a single real-robot demonstration.
Current face reenactment and swapping methods mainly rely on GAN frameworks, but recent focus has shifted to pre-trained diffusion models for their superior generation capabilities. However, training these models is resource-intensive, and the results have not yet achieved satisfactory performance levels. To address this issue, we introduce Face-Adapter, an efficient and effective adapter designed for high-precision and high-fidelity face editing for pre-trained diffusion models. We observe that both face reenactment/swapping tasks essentially involve combinations of target structure, ID and attribute. We aim to sufficiently decouple the control of these factors to achieve both tasks in one model. Specifically, our method contains: 1) A Spatial Condition Generator that provides precise landmarks and background; 2) A Plug-and-play Identity Encoder that transfers face embeddings to the text space by a transformer decoder. 3) An Attribute Controller that integrates spatial conditions and detailed attributes. Face-Adapter achieves comparable or even superior performance in terms of motion control precision, ID retention capability, and generation quality compared to fully fine-tuned face reenactment/swapping models. Additionally, Face-Adapter seamlessly integrates with various StableDiffusion models.
Multiple extended target tracking (ETT) has gained increasing attention due to the development of high-precision LiDAR and radar sensors in automotive applications. For LiDAR point cloud-based vehicle tracking, this paper presents a probabilistic measurement-region association (PMRA) ETT model, which can describe the complex measurement distribution by partitioning the target extent into different regions. The PMRA model overcomes the drawbacks of previous data-region association (DRA) models by eliminating the approximation error of constrained estimation and using continuous integrals to more reliably calculate the association probabilities. Furthermore, the PMRA model is integrated with the Poisson multi-Bernoulli mixture (PMBM) filter for tracking multiple vehicles. Simulation results illustrate the superior estimation accuracy of the proposed PMRA-PMBM filter in terms of both positions and extents of the vehicles comparing with PMBM filters using the gamma Gaussian inverse Wishart and DRA implementations.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).