Traditionally, distillation has been used to train a student model to emulate the input/output functionality of a teacher. A more useful goal than emulation, yet under-explored, is for the student to learn feature representations that transfer well to future tasks. However, we observe that standard distillation of task-specific teachers actually *reduces* the transferability of student representations to downstream tasks. We show that a multi-head, multi-task distillation method using an unlabeled proxy dataset and a generalist teacher is sufficient to consolidate representations from task-specific teacher(s) and improve downstream performance, outperforming the teacher(s) and the strong baseline of ImageNet pretrained features. Our method can also combine the representational knowledge of multiple teachers trained on one or multiple domains into a single model, whose representation is improved on all teachers' domain(s).
When machine predictors can achieve higher performance than the human decision-makers they support, improving the performance of human decision-makers is often conflated with improving machine accuracy. Here we propose a framework to directly support human decision-making, in which the role of machines is to reframe problems rather than to prescribe actions through prediction. Inspired by the success of representation learning in improving performance of machine predictors, our framework learns human-facing representations optimized for human performance. This "Mind Composed with Machine" framework incorporates a human decision-making model directly into the representation learning paradigm and is trained with a novel human-in-the-loop training procedure. We empirically demonstrate the successful application of the framework to various tasks and representational forms.
Pre-training text representations has recently been shown to significantly improve the state-of-the-art in many natural language processing tasks. The central goal of pre-training is to learn text representations that are useful for subsequent tasks. However, existing approaches are optimized by minimizing a proxy objective, such as the negative log likelihood of language modeling. In this work, we introduce a learning algorithm which directly optimizes model's ability to learn text representations for effective learning of downstream tasks. We show that there is an intrinsic connection between multi-task pre-training and model-agnostic meta-learning with a sequence of meta-train steps. The standard multi-task learning objective adopted in BERT is a special case of our learning algorithm where the depth of meta-train is zero. We study the problem in two settings: unsupervised pre-training and supervised pre-training with different pre-training objects to verify the generality of our approach.Experimental results show that our algorithm brings improvements and learns better initializations for a variety of downstream tasks.
We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.
Continual learning aims to improve the ability of modern learning systems to deal with non-stationary distributions, typically by attempting to learn a series of tasks sequentially. Prior art in the field has largely considered supervised or reinforcement learning tasks, and often assumes full knowledge of task labels and boundaries. In this work, we propose an approach (CURL) to tackle a more general problem that we will refer to as unsupervised continual learning. The focus is on learning representations without any knowledge about task identity, and we explore scenarios when there are abrupt changes between tasks, smooth transitions from one task to another, or even when the data is shuffled. The proposed approach performs task inference directly within the model, is able to dynamically expand to capture new concepts over its lifetime, and incorporates additional rehearsal-based techniques to deal with catastrophic forgetting. We demonstrate the efficacy of CURL in an unsupervised learning setting with MNIST and Omniglot, where the lack of labels ensures no information is leaked about the task. Further, we demonstrate strong performance compared to prior art in an i.i.d setting, or when adapting the technique to supervised tasks such as incremental class learning.
Often we wish to transfer representational knowledge from one neural network to another. Examples include distilling a large network into a smaller one, transferring knowledge from one sensory modality to a second, or ensembling a collection of models into a single estimator. Knowledge distillation, the standard approach to these problems, minimizes the KL divergence between the probabilistic outputs of a teacher and student network. We demonstrate that this objective ignores important structural knowledge of the teacher network. This motivates an alternative objective by which we train a student to capture significantly more information in the teacher's representation of the data. We formulate this objective as contrastive learning. Experiments demonstrate that our resulting new objective outperforms knowledge distillation and other cutting-edge distillers on a variety of knowledge transfer tasks, including single model compression, ensemble distillation, and cross-modal transfer. Our method sets a new state-of-the-art in many transfer tasks, and sometimes even outperforms the teacher network when combined with knowledge distillation. Code: //github.com/HobbitLong/RepDistiller.
Knowledge distillation is typically conducted by training a small model (the student) to mimic a large and cumbersome model (the teacher). The idea is to compress the knowledge from the teacher by using its output probabilities as soft-labels to optimize the student. However, when the teacher is considerably large, there is no guarantee that the internal knowledge of the teacher will be transferred into the student; even if the student closely matches the soft-labels, its internal representations may be considerably different. This internal mismatch can undermine the generalization capabilities originally intended to be transferred from the teacher to the student. In this paper, we propose to distill the internal representations of a large model such as BERT into a simplified version of it. We formulate two ways to distill such representations and various algorithms to conduct the distillation. We experiment with datasets from the GLUE benchmark and consistently show that adding knowledge distillation from internal representations is a more powerful method than only using soft-label distillation.
Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.
Text classification tends to be difficult when the data is deficient or when it is required to adapt to unseen classes. In such challenging scenarios, recent studies have often used meta-learning to simulate the few-shot task, thus negating explicit common linguistic features across tasks. Deep language representations have proven to be very effective forms of unsupervised pretraining, yielding contextualized features that capture linguistic properties and benefit downstream natural language understanding tasks. However, the effect of pretrained language representation for few-shot learning on text classification tasks is still not well understood. In this study, we design a few-shot learning model with pretrained language representations and report the empirical results. We show that our approach is not only simple but also produces state-of-the-art performance on a well-studied sentiment classification dataset. It can thus be further suggested that pretraining could be a promising solution for few shot learning of many other NLP tasks. The code and the dataset to replicate the experiments are made available at //github.com/zxlzr/FewShotNLP.
This paper aims at learning representations for long sequences of continuous signals. Recently, the BERT model has demonstrated the effectiveness of stacked transformers for representing sequences of discrete signals (i.e. word tokens). Inspired by its success, we adopt the stacked transformer architecture, but generalize its training objective to maximize the mutual information between the masked signals, and the bidirectional context, via contrastive loss. This enables the model to handle continuous signals, such as visual features. We further consider the case when there are multiple sequences that are semantically aligned at the sequence-level but not at the element-level (e.g. video and ASR), where we propose to use a Transformer to estimate the mutual information between the two sequences, which is again maximized via contrastive loss. We demonstrate the effectiveness of the learned representations on modeling long video sequences for action anticipation and video captioning. The results show that our method, referred to by Contrastive Bidirectional Transformer ({\bf CBT}), outperforms various baselines significantly. Furthermore, we improve over the state of the art.