Consumer Internet of things research often involves collecting network traffic sent or received by IoT devices. These data are typically collected via crowdsourcing or while researchers manually interact with IoT devices in a laboratory setting. However, manual interactions and crowdsourcing are often tedious, expensive, inaccurate, or do not provide comprehensive coverage of possible IoT device behaviors. We present a new method for generating IoT network traffic using a robotic arm to automate user interactions with devices. This eliminates manual button pressing and enables permutation-based interaction sequences that rigorously explore the range of possible device behaviors. We test this approach with an Arduino-controlled robotic arm, a smart speaker and a smart thermostat, using machine learning to demonstrate that collected network traffic contains information about device interactions that could be useful for network, security, or privacy analyses. We also provide source code and documentation allowing researchers to easily automate IoT device interactions and network traffic collection in future studies.
Scaling current quantum communication demonstrations to a large-scale quantum network will require not only advancements in quantum hardware capabilities, but also robust control of such devices to bridge the gap to user demand. Moreover, the abstraction of tasks and services offered by the quantum network should enable platform-independent applications to be executed without knowledge of the underlying physical implementation. Here we experimentally demonstrate, using remote solid-state quantum network nodes, a link layer and a physical layer protocol for entanglement-based quantum networks. The link layer abstracts the physical-layer entanglement attempts into a robust, platform-independent entanglement delivery service. The system is used to run full state tomography of the delivered entangled states, as well as preparation of a remote qubit state on a server by its client. Our results mark a clear transition from physics experiments to quantum communication systems, which will enable the development and testing of components of future quantum networks.
Over the last few years, the DRL paradigm has been widely adopted for 5G and beyond network optimization because of its extreme adaptability to many different scenarios. However, collecting and processing learning data entail a significant cost in terms of communication and computational resources, which is often disregarded in the networking literature. In this work, we analyze the cost of learning in a resource-constrained system, defining an optimization problem in which training a DRL agent makes it possible to improve the resource allocation strategy but also reduces the number of available resources. Our simulation results show that the cost of learning can be critical when evaluating DRL schemes on the network edge and that assuming a cost-free learning model can lead to significantly overestimating performance.
The Controller Area Network (CAN) is the most common protocol interconnecting the various control units of modern cars. Its vulnerabilities are somewhat known but we argue they are not yet fully explored -- although the protocol is obviously not secure by design, it remains to be thoroughly assessed how and to what extent it can be maliciously exploited. This manuscript describes the early steps towards a larger goal, that of integrating the various CAN pentesting activities together and carry them out holistically within an established pentesting environment such as the Metasploit Framework. In particular, we shall see how to build an exploit that upsets a simulated tachymeter running on a minimal Linux machine. While both portions are freely available from the authors' Github shares, the exploit is currently subject to a Metasploit pull request.
Given the tremendous success of the Internet of Things in interconnecting consumer devices, we observe a natural trend to likewise interconnect devices in industrial settings, referred to as Industrial Internet of Things or Industry 4.0. While this coupling of industrial components provides many benefits, it also introduces serious security challenges. Although sharing many similarities with the consumer Internet of Things, securing the Industrial Internet of Things introduces its own challenges but also opportunities, mainly resulting from a longer lifetime of components and a larger scale of networks. In this paper, we identify the unique security goals and challenges of the Industrial Internet of Things, which, unlike consumer deployments, mainly follow from safety and productivity requirements. To address these security goals and challenges, we provide a comprehensive survey of research efforts to secure the Industrial Internet of Things, discuss their applicability, and analyze their security benefits.
Unmanned aerial vehicles (UAVs) are envisioned to be extensively employed for assisting wireless communications in Internet of Things (IoT) applications. On the other hand, terahertz (THz) enabled intelligent reflecting surface (IRS) is expected to be one of the core enabling technologies for forthcoming beyond-5G wireless communications that promise a broad range of data-demand applications. In this paper, we propose a UAV-mounted IRS (UIRS) communication system over THz bands for confidential data dissemination from an access point (AP) towards multiple ground user equipments (UEs) in IoT networks. Specifically, the AP intends to send data to the scheduled UE, while unscheduled UEs may pose potential adversaries. To protect information messages and the privacy of the scheduled UE, we aim to devise an energy-efficient multi-UAV covert communication scheme, where the UIRS is for reliable data transmissions, and an extra UAV is utilized as a cooperative jammer generating artificial noise (AN) to degrade unscheduled UEs detection. We then formulate a novel minimum average energy efficiency (mAEE) optimization problem, targetting to improve the covert throughput and reduce UAVs' propulsion energy consumption subject to the covertness requirement, which is determined analytically. Since the optimization problem is non-convex, we tackle it via the block successive convex approximation (BSCA) approach to iteratively solve a sequence of approximated convex sub-problems, designing the binary user scheduling, AP's power allocation, maximum AN jamming power, IRS beamforming, and both UAVs' trajectory planning. Finally, we present a low-complex overall algorithm for system performance enhancement with complexity and convergence analysis. Numerical results are provided to verify our analysis and demonstrate significant outperformance of our design over other existing benchmark schemes.
The structure of many complex networks includes edge directionality and weights on top of their topology. Network analysis that can seamlessly consider combination of these properties are desirable. In this paper, we study two important such network analysis techniques, namely, centrality and clustering. An information-flow based model is adopted for clustering, which itself builds upon an information theoretic measure for computing centrality. Our principal contributions include a generalized model of Markov entropic centrality with the flexibility to tune the importance of node degrees, edge weights and directions, with a closed-form asymptotic analysis. It leads to a novel two-stage graph clustering algorithm. The centrality analysis helps reason about the suitability of our approach to cluster a given graph, and determine `query' nodes, around which to explore local community structures, leading to an agglomerative clustering mechanism. The entropic centrality computations are amortized by our clustering algorithm, making it computationally efficient: compared to prior approaches using Markov entropic centrality for clustering, our experiments demonstrate multiple orders of magnitude of speed-up. Our clustering algorithm naturally inherits the flexibility to accommodate edge directionality, as well as different interpretations and interplay between edge weights and node degrees. Overall, this paper thus not only makes significant theoretical and conceptual contributions, but also translates the findings into artifacts of practical relevance, yielding new, effective and scalable centrality computations and graph clustering algorithms, whose efficacy has been validated through extensive benchmarking experiments.
This work presents a proposal for a wireless sensor network for participatory sensing, with IoT sensing devices developed especially for monitoring and predicting air quality, as alternatives of high cost meteorological stations. The system, called pmSensing, aims to measure particulate material. A validation is done by comparing the data collected by the prototype with data from stations. The comparison shows that the results are close, which can enable low-cost solutions to the problem. The system still presents a predictive analysis using recurrent neural networks, in this case the LSTM-RNN, where the predictions presented high accuracy in relation to the real data.
The collective attention on online items such as web pages, search terms, and videos reflects trends that are of social, cultural, and economic interest. Moreover, attention trends of different items exhibit mutual influence via mechanisms such as hyperlinks or recommendations. Many visualisation tools exist for time series, network evolution, or network influence; however, few systems connect all three. In this work, we present AttentionFlow, a new system to visualise networks of time series and the dynamic influence they have on one another. Centred around an ego node, our system simultaneously presents the time series on each node using two visual encodings: a tree ring for an overview and a line chart for details. AttentionFlow supports interactions such as overlaying time series of influence and filtering neighbours by time or flux. We demonstrate AttentionFlow using two real-world datasets, VevoMusic and WikiTraffic. We show that attention spikes in songs can be explained by external events such as major awards, or changes in the network such as the release of a new song. Separate case studies also demonstrate how an artist's influence changes over their career, and that correlated Wikipedia traffic is driven by cultural interests. More broadly, AttentionFlow can be generalised to visualise networks of time series on physical infrastructures such as road networks, or natural phenomena such as weather and geological measurements.
Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.
This paper introduces a novel neural network-based reinforcement learning approach for robot gaze control. Our approach enables a robot to learn and to adapt its gaze control strategy for human-robot interaction neither with the use of external sensors nor with human supervision. The robot learns to focus its attention onto groups of people from its own audio-visual experiences, independently of the number of people, of their positions and of their physical appearances. In particular, we use a recurrent neural network architecture in combination with Q-learning to find an optimal action-selection policy; we pre-train the network using a simulated environment that mimics realistic scenarios that involve speaking/silent participants, thus avoiding the need of tedious sessions of a robot interacting with people. Our experimental evaluation suggests that the proposed method is robust against parameter estimation, i.e. the parameter values yielded by the method do not have a decisive impact on the performance. The best results are obtained when both audio and visual information is jointly used. Experiments with the Nao robot indicate that our framework is a step forward towards the autonomous learning of socially acceptable gaze behavior.