亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study statistical watermarking by formulating it as a hypothesis testing problem, a general framework which subsumes all previous statistical watermarking methods. Key to our formulation is a coupling of the output tokens and the rejection region, realized by pseudo-random generators in practice, that allows non-trivial trade-off between the Type I error and Type II error. We characterize the Uniformly Most Powerful (UMP) watermark in this context. In the most common scenario where the output is a sequence of $n$ tokens, we establish matching upper and lower bounds on the number of i.i.d. tokens required to guarantee small Type I and Type II errors. Our rate scales as $\Theta(h^{-1} \log (1/h))$ with respect to the average entropy per token $h$ and thus greatly improves the $O(h^{-2})$ rate in the previous works. For scenarios where the detector lacks knowledge of the model's distribution, we introduce the concept of model-agnostic watermarking and establish the minimax bounds for the resultant increase in Type II error. Moreover, we formulate the robust watermarking problem where user is allowed to perform a class of perturbation on the generated texts, and characterize the optimal type II error of robust UMP tests via a linear programming problem. To the best of our knowledge, this is the first systematic statistical treatment on the watermarking problem with near-optimal rates in the i.i.d. setting, and might be of interest for future works.

相關內容

High-dimensional imbalanced data poses a machine learning challenge. In the absence of sufficient or high-quality labels, unsupervised feature selection methods are crucial for the success of subsequent algorithms. Therefore, we introduce a Marginal Laplacian Score (MLS), a modification of the well known Laplacian Score (LS) tailored to better address imbalanced data. We introduce an assumption that the minority class or anomalous appear more frequently in the margin of the features. Consequently, MLS aims to preserve the local structure of the dataset's margin. We propose its integration into modern feature selection methods that utilize the Laplacian score. We integrate the MLS algorithm into the Differentiable Unsupervised Feature Selection (DUFS), resulting in DUFS-MLS. The proposed methods demonstrate robust and improved performance on synthetic and public datasets.

Polycube layouts for 3D models effectively support a wide variety of methods such as hex-mesh construction, seamless texture mapping, spline fitting, and multi-block grid generation. Our study of polycube layouts is motivated by conformal mesh generation for aerospace modelling. In this setting, quality and correctness guarantees are of the utmost importance. However, currently the fully automatic construction of valid polycube layouts still poses significant challenges: state-of-the-art methods are generally not guaranteed to return a proper solution, even after post-processing, or they use a prohibitively large number of voxels that add detail indiscriminately. In this paper we present a robust, flexible, and efficient method to generate polycube layouts. Our approach is based on a dual representation for polycube layouts and builds a layout by iteratively adding dual loops. Our construction is robust by design: at any iterative step we maintain a valid polycube layout. We offer the flexibility of manual intervention if the user so desires: while our method is able to compute a complete polycube layout without user intervention, the user can interrupt after each iteration and target further refinement on both the local and the global level. Last but not least, our method is efficient and can be implemented using comparatively simple algorithmic building blocks. Our implementation is publicly available and we present its output for numerous benchmark models.

Gaussian process regression is widely used because of its ability to provide well-calibrated uncertainty estimates and handle small or sparse datasets. However, it struggles with high-dimensional data. One possible way to scale this technique to higher dimensions is to leverage the implicit low-dimensional manifold upon which the data actually lies, as postulated by the manifold hypothesis. Prior work ordinarily requires the manifold structure to be explicitly provided though, i.e. given by a mesh or be known to be one of the well-known manifolds like the sphere. In contrast, in this paper we propose a Gaussian process regression technique capable of inferring implicit structure directly from data (labeled and unlabeled) in a fully differentiable way. For the resulting model, we discuss its convergence to the Mat\'ern Gaussian process on the assumed manifold. Our technique scales up to hundreds of thousands of data points, and may improve the predictive performance and calibration of the standard Gaussian process regression in high-dimensional settings.

Multimodal Knowledge Graph Construction (MMKC) refers to the process of creating a structured representation of entities and relationships through multiple modalities such as text, images, videos, etc. However, existing MMKC models have limitations in handling the introduction of new entities and relations due to the dynamic nature of the real world. Moreover, most state-of-the-art studies in MMKC only consider entity and relation extraction from text data while neglecting other multi-modal sources. Meanwhile, the current continual setting for knowledge graph construction only consider entity and relation extraction from text data while neglecting other multi-modal sources. Therefore, there arises the need to explore the challenge of continuous multimodal knowledge graph construction to address the phenomenon of catastrophic forgetting and ensure the retention of past knowledge extracted from different forms of data. This research focuses on investigating this complex topic by developing lifelong multimodal benchmark datasets. Based on the empirical findings that several state-of-the-art MMKC models, when trained on multimedia data, might unexpectedly underperform compared to those solely utilizing textual resources in a continual setting, we propose a Lifelong MultiModal Consistent Transformer Framework (LMC) for continuous multimodal knowledge graph construction. By combining the advantages of consistent KGC strategies within the context of continual learning, we achieve greater balance between stability and plasticity. Our experiments demonstrate the superior performance of our method over prevailing continual learning techniques or multimodal approaches in dynamic scenarios. Code and datasets can be found at //github.com/zjunlp/ContinueMKGC.

This book is the result of a seminar in which we reviewed multimodal approaches and attempted to create a solid overview of the field, starting with the current state-of-the-art approaches in the two subfields of Deep Learning individually. Further, modeling frameworks are discussed where one modality is transformed into the other, as well as models in which one modality is utilized to enhance representation learning for the other. To conclude the second part, architectures with a focus on handling both modalities simultaneously are introduced. Finally, we also cover other modalities as well as general-purpose multi-modal models, which are able to handle different tasks on different modalities within one unified architecture. One interesting application (Generative Art) eventually caps off this booklet.

Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.

The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.

We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.

北京阿比特科技有限公司