We study a quadrature, proposed by Ermakov and Zolotukhin in the sixties, through the lens of kernel methods. The nodes of this quadrature rule follow the distribution of a determinantal point process, while the weights are defined through a linear system, similarly to the optimal kernel quadrature. In this work, we show how these two classes of quadrature are related, and we prove a tractable formula of the expected value of the squared worst-case integration error on the unit ball of an RKHS of the former quadrature. In particular, this formula involves the eigenvalues of the corresponding kernel and leads to improving on the existing theoretical guarantees of the optimal kernel quadrature with determinantal point processes.
Measurement-based quantum computation (MBQC) offers a fundamentally unique paradigm to design quantum algorithms. Indeed, due to the inherent randomness of quantum measurements, the natural operations in MBQC are not deterministic and unitary, but are rather augmented with probabilistic byproducts. Yet, the main algorithmic use of MBQC so far has been to completely counteract this probabilistic nature in order to simulate unitary computations expressed in the circuit model. In this work, we propose designing MBQC algorithms that embrace this inherent randomness and treat the random byproducts in MBQC as a resource for computation. As a natural application where randomness can be beneficial, we consider generative modeling, a task in machine learning centered around generating complex probability distributions. To address this task, we propose a variational MBQC algorithm equipped with control parameters that allow to directly adjust the degree of randomness to be admitted in the computation. Our numerical findings indicate that this additional randomness can lead to significant gains in learning performance in certain generative modeling tasks. These results highlight the potential advantages in exploiting the inherent randomness of MBQC and motivate further research into MBQC-based algorithms.
This paper investigates the applicability of the DK and DKM shell element classes for the first time within the framework of the standard (and sequential) finite-element-based limit analysis, which is a direct method used for determining the plastic collapse (and post-collapse) behaviour of structures. Despite these elements not being able to guarantee a strict upper bound, it is shown that they exhibit a significantly lower discretization error compared to the strict upper-bound formulated shell elements used in literature. Among these elements, the superiority of quadrangle elements over triangle elements is observed. The numerical results are also compared with the MITC shell elements, which have been shown to converge only in the pure membrane case.
We observe a large variety of robots in terms of their bodies, sensors, and actuators. Given the commonalities in the skill sets, teaching each skill to each different robot independently is inefficient and not scalable when the large variety in the robotic landscape is considered. If we can learn the correspondences between the sensorimotor spaces of different robots, we can expect a skill that is learned in one robot can be more directly and easily transferred to the other robots. In this paper, we propose a method to learn correspondences between robots that have significant differences in their morphologies: a fixed-based manipulator robot with joint control and a differential drive mobile robot. For this, both robots are first given demonstrations that achieve the same tasks. A common latent representation is formed while learning the corresponding policies. After this initial learning stage, the observation of a new task execution by one robot becomes sufficient to generate a latent space representation pertaining to the other robot to achieve the same task. We verified our system in a set of experiments where the correspondence between two simulated robots is learned (1) when the robots need to follow the same paths to achieve the same task, (2) when the robots need to follow different trajectories to achieve the same task, and (3) when complexities of the required sensorimotor trajectories are different for the robots considered. We also provide a proof-of-the-concept realization of correspondence learning between a real manipulator robot and a simulated mobile robot.
We present a semi-Lagrangian characteristic mapping method for the incompressible Euler equations on a rotating sphere. The numerical method uses a spatio-temporal discretization of the inverse flow map generated by the Eulerian velocity as a composition of sub-interval flows formed by $C^1$ spherical spline interpolants. This approximation technique has the capacity of resolving sub-grid scales generated over time without increasing the spatial resolution of the computational grid. The numerical method is analyzed and validated using standard test cases yielding third-order accuracy in the supremum norm. Numerical experiments illustrating the unique resolution properties of the method are performed and demonstrate the ability to reproduce the forward energy cascade at sub-grid scales by upsampling the numerical solution.
Twitter bots are a controversial element of the platform, and their negative impact is well known. In the field of scientific communication, they have been perceived in a more positive light, and the accounts that serve as feeds alerting about scientific publications are quite common. However, despite being aware of the presence of bots in the dissemination of science, no large-scale estimations have been made nor has it been evaluated if they can truly interfere with altmetrics. Analyzing a dataset of 3,744,231 papers published between 2017 and 2021 and their associated 51,230,936 Twitter mentions, our goal was to determine the volume of publications mentioned by bots and whether they skew altmetrics indicators. Using the BotometerLite API, we categorized Twitter accounts based on their likelihood of being bots. The results showed that 11,073 accounts (0.23% of total users) exhibited automated behavior, contributing to 4.72% of all mentions. A significant bias was observed in the activity of bots. Their presence was particularly pronounced in disciplines such as Mathematics, Physics, and Space Sciences, with some specialties even exceeding 70% of the tweets. However, these are extreme cases, and the impact of this activity on altmetrics varies by speciality, with minimal influence in Arts & Humanities and Social Sciences. This research emphasizes the importance of distinguishing between specialties and disciplines when using Twitter as an altmetric.
In this paper the interpolating rational functions introduced by Floater and Hormann are generalized leading to a whole new family of rational functions depending on $\gamma$, an additional positive integer parameter. For $\gamma = 1$, the original Floater--Hormann interpolants are obtained. When $\gamma>1$ we prove that the new rational functions share a lot of the nice properties of the original Floater--Hormann functions. Indeed, for any configuration of nodes in a compact interval, they have no real poles, interpolate the given data, preserve the polynomials up to a certain fixed degree, and have a barycentric-type representation. Moreover, we estimate the associated Lebesgue constants in terms of the minimum ($h^*$) and maximum ($h$) distance between two consecutive nodes. It turns out that, in contrast to the original Floater-Hormann interpolants, for all $\gamma > 1$ we get uniformly bounded Lebesgue constants in the case of equidistant and quasi-equidistant nodes configurations (i.e., when $h\sim h^*$). For such configurations, as the number of nodes tends to infinity, we prove that the new interpolants ($\gamma>1$) uniformly converge to the interpolated function $f$, for any continuous function $f$ and all $\gamma>1$. The same is not ensured by the original FH interpolants ($\gamma=1$). Moreover, we provide uniform and pointwise estimates of the approximation error for functions having different degrees of smoothness. Numerical experiments illustrate the theoretical results and show a better error profile for less smooth functions compared to the original Floater-Hormann interpolants.
The proximal Galerkin finite element method is a high-order, low iteration complexity, nonlinear numerical method that preserves the geometric and algebraic structure of pointwise bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free boundary problems, enforce discrete maximum principles, and develop a scalable, mesh-independent algorithm for optimal design problems with pointwise bound constraints. This paper also provides a derivation of the latent variable proximal point (LVPP) algorithm, an unconditionally stable alternative to the interior point method. LVPP is an infinite-dimensional optimization algorithm that may be viewed as having an adaptive barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of its main benefits is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout this work, we arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and certain infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization. The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis.
In this article, we focus on the error that is committed when computing the matrix logarithm using the Gauss--Legendre quadrature rules. These formulas can be interpreted as Pad\'e approximants of a suitable Gauss hypergeometric function. Empirical observation tells us that the convergence of these quadratures becomes slow when the matrix is not close to the identity matrix, thus suggesting the usage of an inverse scaling and squaring approach for obtaining a matrix with this property. The novelty of this work is the introduction of error estimates that can be used to select a priori both the number of Legendre points needed to obtain a given accuracy and the number of inverse scaling and squaring to be performed. We include some numerical experiments to show the reliability of the estimates introduced.
Information geometry of Markov chains has been studied by Nagaoka, Takeuchi and others using the dually flat structure of the space of transition probabilities. In this context, a submanifold of the space is called a Markov model. In the present paper, we seek for a theory of extended spaces of Markov models in the following sense. As a prototype, for the space of probability distributions on a finite set, Amari has introduced the space of positive measures simply by removing the constraint condition that the total mass is equal to $1$ and investigated the extended space by finding the Bregman and $F$-divergence suitably. According to this line, we introduce an extension of the space of transition probabilities equipped with suitable $F$-divergence for a given Markov chain. We regard it as the space of positive transition measures on a Markov chain, and study the dually flat structure on the space. That provides a new insight on the geometry of Markov chains. We also discuss a relation with other existing work.
We provide a new characterization of both belief update and belief revision in terms of a Kripke-Lewis semantics. We consider frames consisting of a set of states, a Kripke belief relation and a Lewis selection function. Adding a valuation to a frame yields a model. Given a model and a state, we identify the initial belief set K with the set of formulas that are believed at that state and we identify either the updated belief set or the revised belief set, prompted by the input represented by formula A, as the set of formulas that are the consequent of conditionals that (1) are believed at that state and (2) have A as antecedent. We show that this class of models characterizes both the Katsuno-Mendelzon (KM) belief update functions and the AGM belief revision functions, in the following sense: (1) each model gives rise to a partial belief function that can be completed into a full KM/AGM update/revision function, and (2) for every KM/AGM update/revision function there is a model whose associated belief function coincides with it. The difference between update and revision can be reduced to two semantic properties that appear in a stronger form in revision relative to update, thus confirming the finding by Peppas et al. (1996) that, "for a fixed theory K, revising K is much the same as updating K"