亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose three generic models of capacitated coverage and, more generally, submodular maximization to study task-worker assignment problems that arise in a wide range of gig economy platforms. Our models incorporate the following features: (1) Each task and worker can have an arbitrary matching capacity, which captures the limited number of copies or finite budget for the task and the working capacity of the worker; (2) Each task is associated with a coverage or, more generally, a monotone submodular utility function. Our objective is to design an allocation policy that maximizes the sum of all tasks' utilities, subject to capacity constraints on tasks and workers. We consider two settings: offline, where all tasks and workers are static, and online, where tasks are static while workers arrive dynamically. We present three LP-based rounding algorithms that achieve optimal approximation ratios of $1-1/\mathsf{e} \sim 0.632$ for offline coverage maximization, competitive ratios of $(19-67/\mathsf{e}^3)/27\sim 0.580$ and $0.436$ for online coverage and online monotone submodular maximization, respectively.

相關內容

This paper investigates the possibility of approximating multiple mathematical operations in latent space for expression derivation. To this end, we introduce different multi-operational representation paradigms, modelling mathematical operations as explicit geometric transformations. By leveraging a symbolic engine, we construct a large-scale dataset comprising 1.7M derivation steps stemming from 61K premises and 6 operators, analysing the properties of each paradigm when instantiated with state-of-the-art neural encoders. Specifically, we investigate how different encoding mechanisms can approximate equational reasoning in latent space, exploring the trade-off between learning different operators and specialising within single operations, as well as the ability to support multi-step derivations and out-of-distribution generalisation. Our empirical analysis reveals that the multi-operational paradigm is crucial for disentangling different operators, while discriminating the conclusions for a single operation is achievable in the original expression encoder. Moreover, we show that architectural choices can heavily affect the training dynamics, structural organisation, and generalisation of the latent space, resulting in significant variations across paradigms and classes of encoders.

In this paper, a stochastic geometry based analytical framework is proposed for secure simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted non-orthogonal multiple access (NOMA) transmissions, where legitimate users (LUs) and eavesdroppers are randomly distributed. Both the time-switching protocol (TS) and energy splitting (ES) protocol are considered for the STAR-RIS. To characterize system performance, the channel statistics are first provided, and the Gamma approximation is adopted for general cascaded $\kappa$-$\mu$ fading. Afterward, the closed-form expressions for both the secrecy outage probability (SOP) and average secrecy capacity (ASC) are derived. To obtain further insights, the asymptotic performance for the secrecy diversity order and the secrecy slope are deduced. The theoretical results show that 1) the secrecy diversity orders of the strong LU and the weak LU depend on the path loss exponent and the distribution of the received signal-to-noise ratio, respectively; 2) the secrecy slope of the ES protocol achieves the value of one, higher than the slope of the TS protocol which is the mode operation parameter of TS. The numerical results demonstrate that: 1) there is an optimal STAR-RIS mode operation parameter to maximize the secrecy performance; 2) the STAR-RIS-NOMA significantly outperforms the STAR-RIS-orthogonal multiple access.

Collaborative decision-making is an essential capability for multi-robot systems, such as connected vehicles, to collaboratively control autonomous vehicles in accident-prone scenarios. Under limited communication bandwidth, capturing comprehensive situational awareness by integrating connected agents' observation is very challenging. In this paper, we propose a novel collaborative decision-making method that efficiently and effectively integrates collaborators' representations to control the ego vehicle in accident-prone scenarios. Our approach formulates collaborative decision-making as a classification problem. We first represent sequences of raw observations as spatiotemporal graphs, which significantly reduce the package size to share among connected vehicles. Then we design a novel spatiotemporal graph neural network based on heterogeneous graph learning, which analyzes spatial and temporal connections of objects in a unified way for collaborative decision-making. We evaluate our approach using a high-fidelity simulator that considers realistic traffic, communication bandwidth, and vehicle sensing among connected autonomous vehicles. The experimental results show that our representation achieves over 100x reduction in the shared data size that meets the requirements of communication bandwidth for connected autonomous driving. In addition, our approach achieves over 30% improvements in driving safety.

In this paper, we prove the first Bayesian regret bounds for Thompson Sampling in reinforcement learning in a multitude of settings. We simplify the learning problem using a discrete set of surrogate environments, and present a refined analysis of the information ratio using posterior consistency. This leads to an upper bound of order $\widetilde{O}(H\sqrt{d_{l_1}T})$ in the time inhomogeneous reinforcement learning problem where $H$ is the episode length and $d_{l_1}$ is the Kolmogorov $l_1-$dimension of the space of environments. We then find concrete bounds of $d_{l_1}$ in a variety of settings, such as tabular, linear and finite mixtures, and discuss how how our results are either the first of their kind or improve the state-of-the-art.

Recently, there has been increased interest in fair generative models. In this work, we conduct, for the first time, an in-depth study on fairness measurement, a critical component in gauging progress on fair generative models. We make three contributions. First, we conduct a study that reveals that the existing fairness measurement framework has considerable measurement errors, even when highly accurate sensitive attribute (SA) classifiers are used. These findings cast doubts on previously reported fairness improvements. Second, to address this issue, we propose CLassifier Error-Aware Measurement (CLEAM), a new framework which uses a statistical model to account for inaccuracies in SA classifiers. Our proposed CLEAM reduces measurement errors significantly, e.g., 4.98% $\rightarrow$ 0.62% for StyleGAN2 w.r.t. Gender. Additionally, CLEAM achieves this with minimal additional overhead. Third, we utilize CLEAM to measure fairness in important text-to-image generator and GANs, revealing considerable biases in these models that raise concerns about their applications. Code and more resources: //sutd-visual-computing-group.github.io/CLEAM/.

Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.

The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司