亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Simultaneous Localization And Mapping (SLAM) has become a crucial aspect in the fields of autonomous driving and robotics. One crucial component of visual SLAM is the Field-of-View (FoV) of the camera, as a larger FoV allows for a wider range of surrounding elements and features to be perceived. However, when the FoV of the camera reaches the negative half-plane, traditional methods for representing image feature points using [u,v,1]^T become ineffective. While the panoramic FoV is advantageous for loop closure, its benefits are not easily realized under large-attitude-angle differences where loop-closure frames cannot be easily matched by existing methods. As loop closure on wide-FoV panoramic data further comes with a large number of outliers, traditional outlier rejection methods are not directly applicable. To address these issues, we propose LF-VISLAM, a Visual Inertial SLAM framework for cameras with extremely Large FoV with loop closure. A three-dimensional vector with unit length is introduced to effectively represent feature points even on the negative half-plane. The attitude information of the SLAM system is leveraged to guide the feature point detection of the loop closure. Additionally, a new outlier rejection method based on the unit length representation is integrated into the loop closure module. We collect the PALVIO dataset using a Panoramic Annular Lens (PAL) system with an entire FoV of 360{\deg}x(40{\deg}~120{\deg}) and an Inertial Measurement Unit (IMU) for Visual Inertial Odometry (VIO) to address the lack of panoramic SLAM datasets. Experiments on the established PALVIO and public datasets show that the proposed LF-VISLAM outperforms state-of-the-art SLAM methods. Our code will be open-sourced at //github.com/flysoaryun/LF-VISLAM.

相關內容

即時定位與地圖構建(SLAM或Simultaneouslocalizationandmapping)是這樣一種技術:使得機器人和自動駕駛汽車等設備能在未知環境(沒有先驗知識的前提下)建立地圖,或者在已知環境(已給出該地圖的先驗知識)中能更新地圖,并保證這些設備能在同時追蹤它們的當前位置。

The quest for accurate prediction of drug molecule properties poses a fundamental challenge in the realm of Artificial Intelligence Drug Discovery (AIDD). An effective representation of drug molecules emerges as a pivotal component in this pursuit. Contemporary leading-edge research predominantly resorts to self-supervised learning (SSL) techniques to extract meaningful structural representations from large-scale, unlabeled molecular data, subsequently fine-tuning these representations for an array of downstream tasks. However, an inherent shortcoming of these studies lies in their singular reliance on one modality of molecular information, such as molecule image or SMILES representations, thus neglecting the potential complementarity of various molecular modalities. In response to this limitation, we propose MolIG, a novel MultiModaL molecular pre-training framework for predicting molecular properties based on Image and Graph structures. MolIG model innovatively leverages the coherence and correlation between molecule graph and molecule image to execute self-supervised tasks, effectively amalgamating the strengths of both molecular representation forms. This holistic approach allows for the capture of pivotal molecular structural characteristics and high-level semantic information. Upon completion of pre-training, Graph Neural Network (GNN) Encoder is used for the prediction of downstream tasks. In comparison to advanced baseline models, MolIG exhibits enhanced performance in downstream tasks pertaining to molecular property prediction within benchmark groups such as MoleculeNet Benchmark Group and ADMET Benchmark Group.

LARS and LAMB have emerged as prominent techniques in Large Batch Learning (LBL) to ensure training stability in AI. Convergence stability is a challenge in LBL, where the AI agent usually gets trapped in the sharp minimizer. To address this challenge, warm-up is an efficient technique, but it lacks a strong theoretical foundation. Specifically, the warm-up process often reduces gradients in the early phase, inadvertently preventing the agent from escaping the sharp minimizer early on. In light of this situation, we conduct empirical experiments to analyze the behaviors of LARS and LAMB with and without a warm-up strategy. Our analyses give a comprehensive insight into the behaviors of LARS, LAMB, and the necessity of a warm-up technique in LBL, including an explanation of their failure in many cases. Building upon these insights, we propose a novel algorithm called Time Varying LARS (TVLARS), which facilitates robust training in the initial phase without the need for warm-up. A configurable sigmoid-like function is employed in TVLARS to replace the warm-up process to enhance training stability. Moreover, TVLARS stimulates gradient exploration in the early phase, thus allowing it to surpass the sharp minimizes early on and gradually transition to LARS and achieving robustness of LARS in the latter phases. Extensive experimental evaluations reveal that TVLARS consistently outperforms LARS and LAMB in most cases, with improvements of up to 2% in classification scenarios. Notably, in every case of self-supervised learning, TVLARS dominates LARS and LAMB with performance improvements of up to 10%.

Among the many tasks that Large Language Models (LLMs) have revolutionized is text classification. However, existing approaches for applying pretrained LLMs to text classification predominantly rely on using single token outputs from only the last layer of hidden states. As a result, they suffer from limitations in efficiency, task-specificity, and interpretability. In our work, we contribute an approach that uses all internal representations by employing multiple pooling strategies on all activation and hidden states. Our novel lightweight strategy, Sparsify-then-Classify (STC) first sparsifies task-specific features layer-by-layer, then aggregates across layers for text classification. STC can be applied as a seamless plug-and-play module on top of existing LLMs. Our experiments on a comprehensive set of models and datasets demonstrate that STC not only consistently improves the classification performance of pretrained and fine-tuned models, but is also more efficient for both training and inference, and is more intrinsically interpretable.

Automatic Speech Recognition (ASR) models need to be optimized for specific hardware before they can be deployed on devices. This can be done by tuning the model's hyperparameters or exploring variations in its architecture. Re-training and re-validating models after making these changes can be a resource-intensive task. This paper presents TODM (Train Once Deploy Many), a new approach to efficiently train many sizes of hardware-friendly on-device ASR models with comparable GPU-hours to that of a single training job. TODM leverages insights from prior work on Supernet, where Recurrent Neural Network Transducer (RNN-T) models share weights within a Supernet. It reduces layer sizes and widths of the Supernet to obtain subnetworks, making them smaller models suitable for all hardware types. We introduce a novel combination of three techniques to improve the outcomes of the TODM Supernet: adaptive dropouts, an in-place Alpha-divergence knowledge distillation, and the use of ScaledAdam optimizer. We validate our approach by comparing Supernet-trained versus individually tuned Multi-Head State Space Model (MH-SSM) RNN-T using LibriSpeech. Results demonstrate that our TODM Supernet either matches or surpasses the performance of manually tuned models by up to a relative of 3% better in word error rate (WER), while efficiently keeping the cost of training many models at a small constant.

Free Content Websites (FCWs) are a significant element of the Web, and realizing their use is essential. This study analyzes FCWs worldwide by studying how they correlate with different network sizes, cloud service providers, and countries, depending on the type of content they offer. Additionally, we compare these findings with those of premium content websites (PCWs). Our analysis concluded that FCWs correlate mainly with networks of medium size, which are associated with a higher concentration of malicious websites. Moreover, we found a strong correlation between PCWs, cloud, and country hosting patterns. At the same time, some correlations were also observed concerning FCWs but with distinct patterns contrasting each other for both types. Our investigation contributes to comprehending the FCW ecosystem through correlation analysis, and the indicative results point toward controlling the potential risks caused by these sites through adequate segregation and filtering due to their concentration.

Modern research increasingly relies on automated methods to assist researchers. An example of this is Optical Chemical Structure Recognition (OCSR), which aids chemists in retrieving information about chemicals from large amounts of documents. Markush structures are chemical structures that cannot be parsed correctly by OCSR and cause errors. The focus of this research was to propose and test a novel method for classifying Markush structures. Within this method, a comparison was made between fixed-feature extraction and end-to-end learning (CNN). The end-to-end method performed significantly better than the fixed-feature method, achieving 0.928 (0.035 SD) Macro F1 compared to the fixed-feature method's 0.701 (0.052 SD). Because of the nature of the experiment, these figures are a lower bound and can be improved further. These results suggest that Markush structures can be filtered out effectively and accurately using the proposed method. When implemented into OCSR pipelines, this method can improve their performance and use to other researchers.

Reinforcement Learning from Human Feedback (RLHF) has played a crucial role in the success of large models such as ChatGPT. RLHF is a reinforcement learning framework which combines human feedback to improve learning effectiveness and performance. However, obtaining preferences feedback manually is quite expensive in commercial applications. Some statistical commercial indicators are usually more valuable and always ignored in RLHF. There exists a gap between commercial target and model training. In our research, we will attempt to fill this gap with statistical business feedback instead of human feedback, using AB testing which is a well-established statistical method. Reinforcement Learning from Statistical Feedback (RLSF) based on AB testing is proposed. Statistical inference methods are used to obtain preferences for training the reward network, which fine-tunes the pre-trained model in reinforcement learning framework, achieving greater business value. Furthermore, we extend AB testing with double selections at a single time-point to ANT testing with multiple selections at different feedback time points. Moreover, we design numerical experiences to validate the effectiveness of our algorithm framework.

Deep Learning (DL) models have been widely deployed on IoT devices with the help of advancements in DL algorithms and chips. However, the limited resources of edge devices make these on-device DL models hard to be generalizable to diverse environments and tasks. Although the recently emerged foundation models (FMs) show impressive generalization power, how to effectively leverage the rich knowledge of FMs on resource-limited edge devices is still not explored. In this paper, we propose EdgeFM, a novel edge-cloud cooperative system with open-set recognition capability. EdgeFM selectively uploads unlabeled data to query the FM on the cloud and customizes the specific knowledge and architectures for edge models. Meanwhile, EdgeFM conducts dynamic model switching at run-time taking into account both data uncertainty and dynamic network variations, which ensures the accuracy always close to the original FM. We implement EdgeFM using two FMs on two edge platforms. We evaluate EdgeFM on three public datasets and two self-collected datasets. Results show that EdgeFM can reduce the end-to-end latency up to 3.2x and achieve 34.3% accuracy increase compared with the baseline.

Natural Language Processing (NLP) has been revolutionized by the use of Pre-trained Language Models (PLMs) such as BERT. Despite setting new records in nearly every NLP task, PLMs still face a number of challenges including poor interpretability, weak reasoning capability, and the need for a lot of expensive annotated data when applied to downstream tasks. By integrating external knowledge into PLMs, \textit{\underline{K}nowledge-\underline{E}nhanced \underline{P}re-trained \underline{L}anguage \underline{M}odels} (KEPLMs) have the potential to overcome the above-mentioned limitations. In this paper, we examine KEPLMs systematically through a series of studies. Specifically, we outline the common types and different formats of knowledge to be integrated into KEPLMs, detail the existing methods for building and evaluating KEPLMS, present the applications of KEPLMs in downstream tasks, and discuss the future research directions. Researchers will benefit from this survey by gaining a quick and comprehensive overview of the latest developments in this field.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

北京阿比特科技有限公司