亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Scalable and effective calibration is a fundamental requirement for Low Cost Air Quality Monitoring Systems and will enable accurate and pervasive monitoring in cities. Suffering from environmental interferences and fabrication variance, these devices need to encompass sensors specific and complex calibration processes for reaching a sufficient accuracy to be deployed as indicative measurement devices in Air Quality (AQ) monitoring networks. Concept and sensor drift often force calibration process to be frequently repeated. These issues lead to unbearable calibration costs which denies their massive deployment when accuracy is a concern. In this work, We propose a zero transfer samples, global calibration methodology as a technological enabler for IoT AQ multisensory devices which relies on low cost Particulate Matter (PM) sensors. This methodology is based on field recorded responses from a limited number of IoT AQ multisensors units and machine learning concepts and can be universally applied to all units of the same type. A multi season test campaign shown that, when applied to different sensors, this methodology performances match those of state of the art methodology which requires to derive different calibration parameters for each different unit. If confirmed, these results show that, when properly derived, a global calibration law can be exploited for a large number of networked devices with dramatic cost reduction eventually allowing massive deployment of accurate IoT AQ monitoring devices. Furthermore, this calibration model could be easily embedded on board of the device or implemented on the edge allowing immediate access to accurate readings for personal exposure monitor applications as well as reducing long range data transfer needs.

相關內容

Visual Place Recognition (VPR) is a critical task for performing global re-localization in visual perception systems. It requires the ability to accurately recognize a previously visited location under variations such as illumination, occlusion, appearance and viewpoint. In the case of robotic systems and augmented reality, the target devices for deployment are battery powered edge devices. Therefore whilst the accuracy of VPR methods is important so too is memory consumption and latency. Recently new works have focused on the recall@1 metric as a performance measure with limited focus on resource utilization. This has resulted in methods that use deep learning models too large to deploy on low powered edge devices. We hypothesize that these large models are highly over-parameterized and can be optimized to satisfy the constraints of a low powered embedded system whilst maintaining high recall performance. Our work studies the impact of compact convolutional network architecture design in combination with full-precision and mixed-precision post-training quantization on VPR performance. Importantly we not only measure performance via the recall@1 score but also measure memory consumption and latency. We characterize the design implications on memory, latency and recall scores and provide a number of design recommendations for VPR systems under these resource limitations.

Quantum Internetworking is a recent field that promises numerous interesting applications, many of which require the distribution of entanglement between arbitrary pairs of users. This work deals with the problem of scheduling in an arbitrary entanglement swapping quantum network - often called first generation quantum network - in its general topology, multicommodity, loss-aware formulation. We introduce a linear algebraic framework that exploits quantum memory through the creation of intermediate entangled links. The framework is then employed to apply Lyapunov Drift Minimization (a standard technique in classical network science) to mathematically derive a natural class of scheduling policies for quantum networks minimizing the square norm of the user demand backlog. Moreover, an additional class of Max-Weight inspired policies is proposed and benchmarked, reducing significantly the computation cost at the price of a slight performance degradation. The policies are compared in terms of information availability, localization and overall network performance through an ad-hoc simulator that admits user-provided network topologies and scheduling policies in order to showcase the potential application of the provided tools to quantum network design.

We present the first optimal rates for infinite-dimensional vector-valued ridge regression on a continuous scale of norms that interpolate between $L_2$ and the hypothesis space, which we consider as a vector-valued reproducing kernel Hilbert space. These rates allow to treat the misspecified case in which the true regression function is not contained in the hypothesis space. We combine standard assumptions on the capacity of the hypothesis space with a novel tensor product construction of vector-valued interpolation spaces in order to characterize the smoothness of the regression function. Our upper bound not only attains the same rate as real-valued kernel ridge regression, but also removes the assumption that the target regression function is bounded. For the lower bound, we reduce the problem to the scalar setting using a projection argument. We show that these rates are optimal in most cases and independent of the dimension of the output space. We illustrate our results for the special case of vector-valued Sobolev spaces.

Diabetic Retinopathy (DR) is a prevalent illness associated with Diabetes which, if left untreated, can result in irreversible blindness. Deep Learning based systems are gradually being introduced as automated support for clinical diagnosis. Since healthcare has always been an extremely important domain demanding error-free performance, any adversaries could pose a big threat to the applicability of such systems. In this work, we use Universal Adversarial Perturbations (UAPs) to quantify the vulnerability of Medical Deep Neural Networks (DNNs) for detecting DR. To the best of our knowledge, this is the very first attempt that works on attacking complete fine-grained classification of DR images using various UAPs. Also, as a part of this work, we use UAPs to fine-tune the trained models to defend against adversarial samples. We experiment on several models and observe that the performance of such models towards unseen adversarial attacks gets boosted on average by $3.41$ Cohen-kappa value and maximum by $31.92$ Cohen-kappa value. The performance degradation on normal data upon ensembling the fine-tuned models was found to be statistically insignificant using t-test, highlighting the benefits of UAP-based adversarial fine-tuning.

The local convergence of an inexact Newton method is studied for solving generalized equations on Riemannian manifolds by using the metric regularity property which is explored as well. Under suitable conditions and without any additional geometric assumptions, local convergence results with linear and quadratic rate and a semi-local convergence result are obtained for the proposed method. Finally, the theory can be applied to problems of finding a singularity of the sum of two vector fields.

Accurately estimating Origin-Destination (OD) matrices is a topic of increasing interest for efficient transportation network management and sustainable urban planning. Traditionally, travel surveys have supported this process; however, their availability and comprehensiveness can be limited. Moreover, the recent COVID-19 pandemic has triggered unprecedented shifts in mobility patterns, underscoring the urgency of accurate and dynamic mobility data supporting policies and decisions with data-driven evidence. In this study, we tackle these challenges by introducing an innovative pipeline for estimating dynamic OD matrices. The real motivating problem behind this is based on the Trenord railway transportation network in Lombardy, Italy. We apply a novel approach that integrates ticket and subscription sales data with passenger counts obtained from Automated Passenger Counting (APC) systems, making use of the Iterative Proportional Fitting (IPF) algorithm. Our work effectively addresses the complexities posed by incomplete and diverse data sources, showcasing the adaptability of our pipeline across various transportation contexts. Ultimately, this research bridges the gap between available data sources and the escalating need for precise OD matrices. The proposed pipeline fosters a comprehensive grasp of transportation network dynamics, providing a valuable tool for transportation operators, policymakers, and researchers. Indeed, to highlight the potentiality of dynamic OD matrices, we showcase some methods to perform anomaly detection of mobility trends in the network through such matrices and interpret them in light of events that happened in the last months of 2022.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司