In the Bitcoin system, transaction fees serve as an incentive for blockchain confirmations. In general, a transaction with a higher fee is likely to be included in the next block mined, whereas a transaction with a smaller fee or no fee may be delayed or never processed at all. However, the transaction fee needs to be specified when submitting a transaction and almost cannot be altered thereafter. Hence it is indispensable to help a client set a reasonable fee, as a higher fee incurs over-spending and a lower fee could delay the confirmation. In this work, we focus on estimating the transaction fee for a new transaction to help with its confirmation within a given expected time. We identify two major drawbacks in the existing works. First, the current industry products are built on explicit analytical models, ignoring the complex interactions of different factors which could be better captured by machine learning based methods; Second, all of the existing works utilize limited knowledge for the estimation which hinders the potential of further improving the estimation quality. As a result, we propose a framework FENN, which aims to integrate the knowledge from a wide range of sources, including the transaction itself, unconfirmed transactions in the mempool and the blockchain confirmation environment, into a neural network model in order to estimate a proper transaction fee. Finally, we conduct experiments on real blockchain datasets to demonstrate the effectiveness and efficiency of our proposed framework over the state-of-the-art works evaluated by MAPE and RMSE. Each variation model in our framework can finish training within one block interval, which shows the potential of our framework to process the realtime transaction updates in the Bitcoin blockchain.
Using language models as a remote service entails sending private information to an untrusted provider. In addition, potential eavesdroppers can intercept the messages, thereby exposing the information. In this work, we explore the prospects of avoiding such data exposure at the level of text manipulation. We focus on text classification models, examining various token mapping and contextualized manipulation functions in order to see whether classifier accuracy may be maintained while keeping the original text unrecoverable. We find that although some token mapping functions are easy and straightforward to implement, they heavily influence performance on the downstream task, and via a sophisticated attacker can be reconstructed. In comparison, the contextualized manipulation provides an improvement in performance.
The paper describes a number of dialogue phenomena associated with negotiative dialogue, as implemented in a development version of the Talkamatic Dialogue Manager (TDM). This implementation is an initial step towards full coverage of general features of negotiative dialogue in TDM.
To efficiently find an optimum parameter combination in a large-scale problem, it is a key to convert the parameters into available variables in actual machines. Specifically, quadratic unconstrained binary optimization problems are solved with the help of machine learning, e.g., factorization machines with annealing, which convert a raw parameter to binary variables. This work investigates the dependence of the convergence speed and the accuracy on binary labeling method, which can influence the cost function shape and thus the probability of being captured at a local minimum solution. By exemplifying traveling salesman problem, we propose and evaluate Gray labeling, which correlates the Hamming distance in binary labels with the traveling distance. Through numerical simulation of traveling salesman problem up to 15 cities at a limited number of iterations, the Gray labeling shows less local minima percentages and shorter traveling distances compared with natural labeling.
Selective Classification, wherein models can reject low-confidence predictions, promises reliable translation of machine-learning based classification systems to real-world scenarios such as clinical diagnostics. While current evaluation of these systems typically assumes fixed working points based on pre-defined rejection thresholds, methodological progress requires benchmarking the general performance of systems akin to the $\mathrm{AUROC}$ in standard classification. In this work, we define 5 requirements for multi-threshold metrics in selective classification regarding task alignment, interpretability, and flexibility, and show how current approaches fail to meet them. We propose the Area under the Generalized Risk Coverage curve ($\mathrm{AUGRC}$), which meets all requirements and can be directly interpreted as the average risk of undetected failures. We empirically demonstrate the relevance of $\mathrm{AUGRC}$ on a comprehensive benchmark spanning 6 data sets and 13 confidence scoring functions. We find that the proposed metric substantially changes metric rankings on 5 out of the 6 data sets.
The $N$-point discrete Fourier transform (DFT) is a cornerstone for several signal processing applications. Many of these applications operate in real-time, making the computational complexity of the DFT a critical performance indicator to be optimized. Unfortunately, whether the $\mathcal{O}(N\log_2 N)$ time complexity of the fast Fourier transform (FFT) can be outperformed remains an unresolved question in the theory of computation. However, in many applications of the DFT -- such as compressive sensing, image processing, and wideband spectral analysis -- only a small fraction of the output signal needs to be computed because the signal is sparse. This motivates the development of algorithms that compute specific DFT coefficients more efficiently than the FFT algorithm. In this article, we show that the number of points of some DFT coefficients can be dramatically reduced by means of elementary mathematical properties. We present an algorithm that compacts the square index coefficients (SICs) of DFT (i.e., $X_{k\sqrt{N}}$, $k=0,1,\cdots, \sqrt{N}-1$, for a square number $N$) from $N$ to $\sqrt{N}$ points at the expense of $N-1$ complex sums and no multiplication. Based on this, any regular DFT algorithm can be straightforwardly applied to compute the SICs with a reduced number of complex multiplications. If $N$ is a power of two, one can combine our algorithm with the FFT to calculate all SICs in $\mathcal{O}(\sqrt{N}\log_2\sqrt{N})$ time complexity.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.
Textual entailment is a fundamental task in natural language processing. Most approaches for solving the problem use only the textual content present in training data. A few approaches have shown that information from external knowledge sources like knowledge graphs (KGs) can add value, in addition to the textual content, by providing background knowledge that may be critical for a task. However, the proposed models do not fully exploit the information in the usually large and noisy KGs, and it is not clear how it can be effectively encoded to be useful for entailment. We present an approach that complements text-based entailment models with information from KGs by (1) using Personalized PageR- ank to generate contextual subgraphs with reduced noise and (2) encoding these subgraphs using graph convolutional networks to capture KG structure. Our technique extends the capability of text models exploiting structural and semantic information found in KGs. We evaluate our approach on multiple textual entailment datasets and show that the use of external knowledge helps improve prediction accuracy. This is particularly evident in the challenging BreakingNLI dataset, where we see an absolute improvement of 5-20% over multiple text-based entailment models.
Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.