亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum algorithms for factorization, search, and simulation obtain computational advantage by performing control flow such as branching and iteration based on the value of quantum data in superposition. Complicating realization of these algorithms is the fact that in predominant quantum machine models, all control flow as embodied by the program counter is classical, and cannot exist in superposition. In this work, we identify that an alternative model to enable a program counter in superposition faces an obstacle -- no such machine can correctly support control flow constructs with non-injective semantics, including the conventional conditional jump. In fact, prior attempts to support this instruction cause programs to inappropriately collapse the superposition of data, meaning that quantum advantage is lost. We present a quantum machine model that supports both quantum effects on data and data-dependent control flow, using variants of conditional jump with injective semantics. We identify the necessary condition for programs for such a machine to preserve superposition of data, and show that expressible programs coincide with the unitary quantum circuits.

相關內容

P-time event graphs are discrete event systems suitable for modeling processes in which tasks must be executed in predefined time windows. Their dynamics can be represented by max-plus linear-dual inequalities (LDIs), i.e., systems of linear dynamical inequalities in the primal and dual operations of the max-plus algebra. We define a new class of models called switched LDIs (SLDIs), which allow to switch between different modes of operation, each corresponding to a set of LDIs, according to a sequence of modes called schedule. In this paper, we focus on the analysis of SLDIs when the considered schedule is fixed and either periodic or intermittently periodic. We show that SLDIs can model a wide range of applications including single-robot multi-product processing networks, in which every product has different processing requirements and corresponds to a specific mode of operation. Based on the analysis of SLDIs, we propose algorithms to compute: i. minimum and maximum cycle times for these processes, improving the time complexity of other existing approaches; ii. a complete trajectory of the robot including start-up and shut-down transients.

Quantum span program algorithms for function evaluation sometimes have reduced query complexity when promised that the input has a certain structure. We design a modified span program algorithm to show these improvements persist even without a promise ahead of time, and we extend this approach to the more general problem of state conversion. As an application, we prove exponential and superpolynomial quantum advantages in average query complexity for several search problems, generalizing Montanaro's Search with Advice [Montanaro, TQC 2010].

The subset cover problem for $k \geq 1$ hash functions, which can be seen as an extension of the collision problem, was introduced in 2002 by Reyzin and Reyzin to analyse the security of their hash-function based signature scheme HORS. The security of many hash-based signature schemes relies on this problem or a variant of this problem (e.g. HORS, SPHINCS, SPHINCS+, $\dots$). Recently, Yuan, Tibouchi and Abe (2022) introduced a variant to the subset cover problem, called restricted subset cover, and proposed a quantum algorithm for this problem. In this work, we prove that any quantum algorithm needs to make $\Omega\left((k+1)^{-\frac{2^{k}}{2^{k+1}-1}}\cdot N^{\frac{2^{k}-1}{2^{k+1}-1}}\right)$ queries to the underlying hash functions with codomain size $N$ to solve the restricted subset cover problem, which essentially matches the query complexity of the algorithm proposed by Yuan, Tibouchi and Abe. We also analyze the security of the general $(r,k)$-subset cover problem, which is the underlying problem that implies the unforgeability of HORS under a $r$-chosen message attack (for $r \geq 1$). We prove that a generic quantum algorithm needs to make $\Omega\left(N^{k/5}\right)$ queries to the underlying hash functions to find a $(1,k)$-subset cover. We also propose a quantum algorithm that finds a $(r,k)$-subset cover making $O\left(N^{k/(2+2r)}\right)$ queries to the $k$ hash functions.

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is the most prominent multi-objective evolutionary algorithm for real-world applications. While it performs evidently well on bi-objective optimization problems, empirical studies suggest that it is less effective when applied to problems with more than two objectives. A recent mathematical runtime analysis confirmed this observation by proving the NGSA-II for an exponential number of iterations misses a constant factor of the Pareto front of the simple 3-objective OneMinMax problem. In this work, we provide the first mathematical runtime analysis of the NSGA-III, a refinement of the NSGA-II aimed at better handling more than two objectives. We prove that the NSGA-III with sufficiently many reference points -- a small constant factor more than the size of the Pareto front, as suggested for this algorithm -- computes the complete Pareto front of the 3-objective OneMinMax benchmark in an expected number of O(n log n) iterations. This result holds for all population sizes (that are at least the size of the Pareto front). It shows a drastic advantage of the NSGA-III over the NSGA-II on this benchmark. The mathematical arguments used here and in previous work on the NSGA-II suggest that similar findings are likely for other benchmarks with three or more objectives.

Hybrid dynamical systems, i.e. systems that have both continuous and discrete states, are ubiquitous in engineering, but are difficult to work with due to their discontinuous transitions. For example, a robot leg is able to exert very little control effort while it is in the air compared to when it is on the ground. When the leg hits the ground, the penetrating velocity instantaneously collapses to zero. These instantaneous changes in dynamics and discontinuities (or jumps) in state make standard smooth tools for planning, estimation, control, and learning difficult for hybrid systems. One of the key tools for accounting for these jumps is called the saltation matrix. The saltation matrix is the sensitivity update when a hybrid jump occurs and has been used in a variety of fields including robotics, power circuits, and computational neuroscience. This paper presents an intuitive derivation of the saltation matrix and discusses what it captures, where it has been used in the past, how it is used for linear and quadratic forms, how it is computed for rigid body systems with unilateral constraints, and some of the structural properties of the saltation matrix in these cases.

Quantum computing has emerged as a promising domain for the machine learning (ML) area, offering significant computational advantages over classical counterparts. With the growing interest in quantum machine learning (QML), ensuring the correctness and robustness of software platforms to develop such QML programs is critical. A necessary step for ensuring the reliability of such platforms is to understand the bugs they typically suffer from. To address this need, this paper presents the first comprehensive study of bugs in QML frameworks. We inspect 391 real-world bugs collected from 22 open-source repositories of nine popular QML frameworks. We find that 1) 28% of the bugs are quantum-specific, such as erroneous unitary matrix implementation, calling for dedicated approaches to find and prevent them; 2) We manually distilled a taxonomy of five symptoms and nine root cause of bugs in QML platforms; 3) We summarized four critical challenges for QML framework developers. The study results provide researchers with insights into how to ensure QML framework quality and present several actionable suggestions for QML framework developers to improve their code quality.

Over the past decade, the techniques of topological data analysis (TDA) have grown into prominence to describe the shape of data. In recent years, there has been increasing interest in developing statistical methods and in particular hypothesis testing procedures for TDA. Under the statistical perspective, persistence diagrams -- the central multi-scale topological descriptors of data provided by TDA -- are viewed as random observations sampled from some population or process. In this context, one of the earliest works on hypothesis testing focuses on the two-group permutation-based approach where the associated loss function is defined in terms of within-group pairwise bottleneck or Wasserstein distances between persistence diagrams (Robinson and Turner, 2017). However, in situations where persistence diagrams are large in size and number, the permutation test in question gets computationally more costly to apply. To address this limitation, we instead consider pairwise distances between vectorized functional summaries of persistence diagrams for the loss function. In the present work, we explore the utility of the Betti function in this regard, which is one of the simplest function summaries of persistence diagrams. We introduce an alternative vectorization method for the Betti function based on integration and prove stability results with respect to the Wasserstein distance. Moreover, we propose a new shuffling technique of group labels to increase the power of the test. Through several experimental studies, on both synthetic and real data, we show that the vectorized Betti function leads to competitive results compared to the baseline method involving the Wasserstein distances for the permutation test.

In this paper we investigate formal verification problems for Neural Network computations. Various reachability problems will be in the focus, such as: Given symbolic specifications of allowed inputs and outputs in form of Linear Programming instances, one question is whether valid inputs exist such that the given network computes a valid output? Does this property hold for all valid inputs? The former question's complexity has been investigated recently by S\"alzer and Lange for nets using the Rectified Linear Unit and the identity function as their activation functions. We complement their achievements by showing that the problem is NP-complete for piecewise linear functions with rational coefficients that are not linear, NP-hard for almost all suitable activation functions including non-linear ones that are continuous on an interval, complete for the Existential Theory of the Reals $\exists \mathbb R$ for every non-linear polynomial and $\exists \mathbb R$-hard for the exponential function and various sigmoidal functions. For the completeness results, linking the verification tasks with the theory of Constraint Satisfaction Problems turns out helpful.

We consider the problems of testing and learning quantum $k$-junta channels, which are $n$-qubit to $n$-qubit quantum channels acting non-trivially on at most $k$ out of $n$ qubits and leaving the rest of qubits unchanged. We show the following. 1. An $\widetilde{O}\left(\sqrt{k}\right)$-query algorithm to distinguish whether the given channel is $k$-junta channel or is far from any $k$-junta channels, and a lower bound $\Omega\left(\sqrt{k}\right)$ on the number of queries; 2. An $\widetilde{O}\left(4^k\right)$-query algorithm to learn a $k$-junta channel, and a lower bound $\Omega\left(4^k/k\right)$ on the number of queries. This answers an open problem raised by Chen et al. (2023). In order to settle these problems, we develop a Fourier analysis framework over the space of superoperators and prove several fundamental properties, which extends the Fourier analysis over the space of operators introduced in Montanaro and Osborne (2010).

Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning, and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. In this survey, we present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, and methods for incorporating physical prior. We also propose several important open research problems based on the current trends in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and significant domain-specific applications like inverse engineering design and robotic control is far from fully being explored in the field of physics-informed machine learning. We believe that this study will encourage researchers in the machine learning community to actively participate in the interdisciplinary research of physics-informed machine learning.

北京阿比特科技有限公司