Recently, there is growing demand for effective and efficient long sequence modeling, with State Space Models (SSMs) proving to be effective for long sequence tasks. To further reduce energy consumption, SSMs can be adapted to Spiking Neural Networks (SNNs) using spiking functions. However, current spiking-formalized SSMs approaches still rely on float-point matrix-vector multiplication during inference, undermining SNNs' energy advantage. In this work, we address the efficiency and performance challenges of long sequence learning in SNNs simultaneously. First, we propose a decoupled reset method for parallel spiking neuron training, reducing the typical Leaky Integrate-and-Fire (LIF) model's training time from $O(L^2)$ to $O(L\log L)$, effectively speeding up the training by $6.57 \times$ to $16.50 \times$ on sequence lengths $1,024$ to $32,768$. To our best knowledge, this is the first time that parallel computation with a reset mechanism is implemented achieving equivalence to its sequential counterpart. Secondly, to capture long-range dependencies, we propose a Parallel Resonate and Fire (PRF) neuron, which leverages an oscillating membrane potential driven by a resonate mechanism from a differentiable reset function in the complex domain. The PRF enables efficient long sequence learning while maintaining parallel training. Finally, we demonstrate that the proposed spike-driven architecture using PRF achieves performance comparable to Structured SSMs (S4), with two orders of magnitude reduction in energy consumption, outperforming Transformer on Long Range Arena tasks.
Functional simulation is an essential step in digital hardware design. Recently, there has been a growing interest in leveraging Large Language Models (LLMs) for hardware testbench generation tasks. However, the inherent instability associated with LLMs often leads to functional errors in the generated testbenches. Previous methods do not incorporate automatic functional correction mechanisms without human intervention and still suffer from low success rates, especially for sequential tasks. To address this issue, we propose CorrectBench, an automatic testbench generation framework with functional self-validation and self-correction. Utilizing only the RTL specification in natural language, the proposed approach can validate the correctness of the generated testbenches with a success rate of 88.85%. Furthermore, the proposed LLM-based corrector employs bug information obtained during the self-validation process to perform functional self-correction on the generated testbenches. The comparative analysis demonstrates that our method achieves a pass ratio of 70.13% across all evaluated tasks, compared with the previous LLM-based testbench generation framework's 52.18% and a direct LLM-based generation method's 33.33%. Specifically in sequential circuits, our work's performance is 62.18% higher than previous work in sequential tasks and almost 5 times the pass ratio of the direct method. The codes and experimental results are open-sourced at the link: //github.com/AutoBench/CorrectBench
We present Tachis, a higher-order separation logic to reason about the expected cost of probabilistic programs. Inspired by the uses of time credits for reasoning about the running time of deterministic programs, we introduce a novel notion of probabilistic cost credit. Probabilistic cost credits are a separation logic resource that can be used to pay for the cost of operations in programs, and that can be distributed across all possible branches of sampling instructions according to their weight, thus enabling us to reason about expected cost. The representation of cost credits as separation logic resources gives Tachis a great deal of flexibility and expressivity. In particular, it permits reasoning about amortized expected cost by storing excess credits as potential into data structures to pay for future operations. Tachis further supports a range of cost models, including running time and entropy usage. We showcase the versatility of this approach by applying our techniques to prove upper bounds on the expected cost of a variety of probabilistic algorithms and data structures, including randomized quicksort, hash tables, and meldable heaps. All of our results have been mechanized using Coq, Iris, and the Coquelicot real analysis library.
Flow diffusion models (FDMs) have recently shown potential in generation tasks due to the high generation quality. However, the current ordinary differential equation (ODE) solver for FDMs, e.g., the Euler solver, still suffers from slow generation since ODE solvers need many number function evaluations (NFE) to keep high-quality generation. In this paper, we propose a novel training-free flow-solver to reduce NFE while maintaining high-quality generation. The key insight for the flow-solver is to leverage the previous steps to reduce the NFE, where a cache is created to reuse these results from the previous steps. Specifically, the Taylor expansion is first used to approximate the ODE. To calculate the high-order derivatives of Taylor expansion, the flow-solver proposes to use the previous steps and a polynomial interpolation to approximate it, where the number of orders we could approximate equals the number of previous steps we cached. We also prove that the flow-solver has a more minor approximation error and faster generation speed. Experimental results on the CIFAR-10, CelebA-HQ, LSUN-Bedroom, LSUN-Church, ImageNet, and real text-to-image generation prove the efficiency of the flow-solver. Specifically, the flow-solver improves the FID-30K from 13.79 to 6.75, from 46.64 to 19.49 with $\text{NFE}=10$ on CIFAR-10 and LSUN-Church, respectively.
Transformer-based models have achieved remarkable success in various Natural Language Processing (NLP) tasks, yet their ability to handle long documents is constrained by computational limitations. Traditional approaches, such as truncating inputs, sparse self-attention, and chunking, attempt to mitigate these issues, but they often lead to information loss and hinder the model's ability to capture long-range dependencies. In this paper, we introduce ChuLo, a novel chunk representation method for long document classification that addresses these limitations. Our ChuLo groups input tokens using unsupervised keyphrase extraction, emphasizing semantically important keyphrase based chunk to retain core document content while reducing input length. This approach minimizes information loss and improves the efficiency of Transformer-based models. Preserving all tokens in long document understanding, especially token classification tasks, is especially important to ensure that fine-grained annotations, which depend on the entire sequence context, are not lost. We evaluate our method on multiple long document classification tasks and long document token classification tasks, demonstrating its effectiveness through comprehensive qualitative and quantitative analyses.
An efficient data structure is fundamental to meeting the growing demands in dynamic graph processing. However, the dual requirements for graph computation efficiency (with contiguous structures) and graph update efficiency (with linked list-like structures) present a conflict in the design principles of graph structures. After experimental studies of existing state-of-the-art dynamic graph structures, we observe that the overhead of cache misses accounts for a major portion of the graph computation time. This paper presents GastCoCo, a system with graph storage and coroutine-based prefetch co-design. By employing software prefetching via stackless coroutines and introducing a prefetch-friendly data structure CBList, GastCoCo significantly alleviates the performance degradation caused by cache misses. Our results show that GastCoCo outperforms state-of-the-art graph storage systems by 1.3x - 180x in graph updates and 1.4x - 41.1x in graph computation.
As Large Language Models (LLMs) continue to grow, reducing costs and alleviating GPU demands has become increasingly critical. However, existing schedulers primarily target either GPU compute or Key-Value Cache (KVC) utilization, failing to fully optimize both GPU compute and KVC usage during each iteration or guarantee timely KVC allocations when needed. To address these challenges, we conducted a trace-based experimental analysis and made insightful observations, leading to the design of a system called EcoServe. EcoServe maximizes multi-resource utilization while ensuring service-level objective (SLO) guarantees in LLM serving. To enable adding prompts to a batch to maximize GPU utilization in each iteration, EcoServe maintains separate waiting queues for prompt processing tasks (PTs) and generation tasks (GTs). It batches GTs with the same predicted response lengths (RL) to save scheduling time and allocates KVC space for the predicted RL to avoid KVC allocation failures. It further has a novel KVC pipelining method, allowing sharing allocated but unused KVC space to enhance KVC utilization. In addition, it prioritizes queued requests that occupy more KVC to release KVC earlier and satisfy request service-level-objective (SLO). Experimental results demonstrate that EcoServe increases throughput by up to 4$\times$ with the same level of latency, generates up to 91\% lower job completion time and up to 91\% higher SLO satisfaction ratio compared to vLLM. It also reduces the number of GPUs used in DistServe by up to 78\% while maintaining the same level of goodput.
Recent advancements in Generative AI offer promising capabilities for spatial analysis. Despite their potential, the integration of generative AI with established GIS platforms remains underexplored. In this study, we propose a framework for integrating LLMs directly into existing GIS platforms, using QGIS as an example. Our approach leverages the reasoning and programming capabilities of LLMs to autonomously generate spatial analysis workflows and code through an informed agent that has comprehensive documentation of key GIS tools and parameters. The implementation of this framework resulted in the development of a "GIS Copilot" that allows GIS users to interact with QGIS using natural language commands for spatial analysis. The GIS Copilot was evaluated with over 100 spatial analysis tasks with three complexity levels: basic tasks that require one GIS tool and typically involve one data layer to perform simple operations; intermediate tasks involving multi-step processes with multiple tools, guided by user instructions; and advanced tasks which involve multi-step processes that require multiple tools but not guided by user instructions, necessitating the agent to independently decide on and executes the necessary steps. The evaluation reveals that the GIS Copilot demonstrates strong potential in automating foundational GIS operations, with a high success rate in tool selection and code generation for basic and intermediate tasks, while challenges remain in achieving full autonomy for more complex tasks. This study contributes to the emerging vision of Autonomous GIS, providing a pathway for non-experts to engage with geospatial analysis with minimal prior expertise. While full autonomy is yet to be achieved, the GIS Copilot demonstrates significant potential for simplifying GIS workflows and enhancing decision-making processes.
Over the several recent years, there has been a boom in development of Flow Matching (FM) methods for generative modeling. One intriguing property pursued by the community is the ability to learn flows with straight trajectories which realize the Optimal Transport (OT) displacements. Straightness is crucial for the fast integration (inference) of the learned flow's paths. Unfortunately, most existing flow straightening methods are based on non-trivial iterative FM procedures which accumulate the error during training or exploit heuristics based on minibatch OT. To address these issues, we develop and theoretically justify the novel \textbf{Optimal Flow Matching} (OFM) approach which allows recovering the straight OT displacement for the quadratic transport in just one FM step. The main idea of our approach is the employment of vector field for FM which are parameterized by convex functions.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.