The Plurality rule for linear orders selects the alternatives most frequently appearing in the first position of those orders, while the Anti-Plurality rule selects the alternatives least often occurring in the final position. We explore extensions of these rules to partial orders, offering axiomatic characterizations for these extensions.
A "partial ordering" is a way to heuristically order a set of examples (partial orderings are a set where, for certain pairs of elements, one precedes the other). While these orderings may only be approximate, they can be useful for guiding a search towards better regions of the data. To illustrate the value of that technique, this paper presents iSNEAK, an incremental human-in-the-loop AI problem solver. iSNEAK uses partial orderings and feedback from humans to prune the space of options. Further, in experiments with a dozen software models of increasing size and complexity (with up to 10,000 variables), iSNEAK only asked a handful of questions to return human-acceptable solutions that outperformed the prior state-of-the-art. We propose the use of partial orderings and tools like iSNEAK to solve the information overload problem where human experts grow fatigued and make mistakes when they are asked too many questions. iSNEAK mitigates the information overload problem since it allows humans to explore complex problem spaces in far less time, with far less effort.
Aspect-based sentiment Analysis (ABSA) identifies and evaluates sentiments toward specific aspects of entities within text, providing detailed insights beyond overall sentiment. However, Attention mechanisms and neural network models struggle with syntactic constraints, and the quadratic complexity of attention mechanisms hinders their adoption for capturing long-range dependencies between aspect and opinion words in ABSA. This complexity can lead to the misinterpretation of irrelevant con-textual words, restricting their effectiveness to short-range dependencies. Some studies have investigated merging semantic and syntactic approaches but face challenges in effectively integrating these methods. To address the above problems, we present MambaForGCN, a novel approach to enhance short and long-range dependencies between aspect and opinion words in ABSA. This innovative approach incorporates syntax-based Graph Convolutional Network (SynGCN) and MambaFormer (Mamba-Transformer) modules to encode input with dependency relations and semantic information. The Multihead Attention (MHA) and Mamba blocks in the MambaFormer module serve as channels to enhance the model with short and long-range dependencies between aspect and opinion words. We also introduce the Kolmogorov-Arnold Networks (KANs) gated fusion, an adaptively integrated feature representation system combining SynGCN and MambaFormer representations. Experimental results on three benchmark datasets demonstrate MambaForGCN's effectiveness, outperforming state-of-the-art (SOTA) baseline models.
Large Language Models (LLMs) have demonstrated their capabilities across various tasks, from language translation to complex reasoning. Understanding and predicting human behavior and biases are crucial for artificial intelligence (AI) assisted systems to provide useful assistance, yet it remains an open question whether these models can achieve this. This paper addresses this gap by leveraging the reasoning and generative capabilities of the LLMs to predict human behavior in two sequential decision-making tasks. These tasks involve balancing between exploitative and exploratory actions and handling delayed feedback, both essential for simulating real-life decision processes. We compare the performance of LLMs with a cognitive instance-based learning (IBL) model, which imitates human experiential decision-making. Our findings indicate that LLMs excel at rapidly incorporating feedback to enhance prediction accuracy. In contrast, the cognitive IBL model better accounts for human exploratory behaviors and effectively captures loss aversion bias, i.e., the tendency to choose a sub-optimal goal with fewer step-cost penalties rather than exploring to find the optimal choice, even with limited experience. The results highlight the benefits of integrating LLMs with cognitive architectures, suggesting that this synergy could enhance the modeling and understanding of complex human decision-making patterns.
With the rapid development of Large Language Models (LLMs), it is crucial to have benchmarks which can evaluate the ability of LLMs on different domains. One common use of LLMs is performing tasks on scientific topics, such as writing algorithms, querying databases or giving mathematical proofs. Inspired by the way university students are evaluated on such tasks, in this paper, we propose SciEx - a benchmark consisting of university computer science exam questions, to evaluate LLMs ability on solving scientific tasks. SciEx is (1) multilingual, containing both English and German exams, and (2) multi-modal, containing questions that involve images, and (3) contains various types of freeform questions with different difficulty levels, due to the nature of university exams. We evaluate the performance of various state-of-the-art LLMs on our new benchmark. Since SciEx questions are freeform, it is not straightforward to evaluate LLM performance. Therefore, we provide human expert grading of the LLM outputs on SciEx. We show that the free-form exams in SciEx remain challenging for the current LLMs, where the best LLM only achieves 59.4\% exam grade on average. We also provide detailed comparisons between LLM performance and student performance on SciEx. To enable future evaluation of new LLMs, we propose using LLM-as-a-judge to grade the LLM answers on SciEx. Our experiments show that, although they do not perform perfectly on solving the exams, LLMs are decent as graders, achieving 0.948 Pearson correlation with expert grading.
The escalating challenge of misinformation, particularly in political discourse, requires advanced fact-checking solutions; this is even clearer in the more complex scenario of multimodal claims. We tackle this issue using a multimodal large language model in conjunction with retrieval-augmented generation (RAG), and introduce two novel reasoning techniques: Chain of RAG (CoRAG) and Tree of RAG (ToRAG). They fact-check multimodal claims by extracting both textual and image content, retrieving external information, and reasoning subsequent questions to be answered based on prior evidence. We achieve a weighted F1-score of 0.85, surpassing a baseline reasoning technique by 0.14 points. Human evaluation confirms that the vast majority of our generated fact-check explanations contain all information from gold standard data.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. In this work, we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph neural networks. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
Explainable Recommendation refers to the personalized recommendation algorithms that address the problem of why -- they not only provide the user with the recommendations, but also make the user aware why such items are recommended by generating recommendation explanations, which help to improve the effectiveness, efficiency, persuasiveness, and user satisfaction of recommender systems. In recent years, a large number of explainable recommendation approaches -- especially model-based explainable recommendation algorithms -- have been proposed and adopted in real-world systems. In this survey, we review the work on explainable recommendation that has been published in or before the year of 2018. We first high-light the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation itself in terms of three aspects: 1) We provide a chronological research line of explanations in recommender systems, including the user study approaches in the early years, as well as the more recent model-based approaches. 2) We provide a taxonomy for explainable recommendation algorithms, including user-based, item-based, model-based, and post-model explanations. 3) We summarize the application of explainable recommendation in different recommendation tasks, including product recommendation, social recommendation, POI recommendation, etc. We devote a chapter to discuss the explanation perspectives in the broader IR and machine learning settings, as well as their relationship with explainable recommendation research. We end the survey by discussing potential future research directions to promote the explainable recommendation research area.