亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The recent successes and spread of large neural language models (LMs) call for a thorough understanding of their computational ability. Describing their computational abilities through LMs' \emph{representational capacity} is a lively area of research. However, investigation into the representational capacity of neural LMs has predominantly focused on their ability to \emph{recognize} formal languages. For example, recurrent neural networks (RNNs) with Heaviside activations are tightly linked to regular languages, i.e., languages defined by finite-state automata (FSAs). Such results, however, fall short of describing the capabilities of RNN \emph{language models} (LMs), which are definitionally \emph{distributions} over strings. We take a fresh look at the representational capacity of RNN LMs by connecting them to \emph{probabilistic} FSAs and demonstrate that RNN LMs with linearly bounded precision can express arbitrary regular LMs.

相關內容

神(shen)經語言模(mo)(mo)(mo)型(xing)(Neural Language Model,NLM)是(shi)一(yi)類用來克服(fu)維數災難的(de)語言模(mo)(mo)(mo)型(xing),它使用詞的(de)分布(bu)式表示對(dui)自然語言序(xu)列建模(mo)(mo)(mo)。不(bu)同(tong)于基于類的(de)n-gram模(mo)(mo)(mo)型(xing),神(shen)經語言模(mo)(mo)(mo)型(xing)在能(neng)夠(gou)識(shi)別兩個相似(si)的(de)詞,并(bing)且(qie)不(bu)喪(sang)失將每個詞編(bian)碼為(wei)彼此不(bu)同(tong)的(de)能(neng)力。神(shen)經語言模(mo)(mo)(mo)型(xing)共享一(yi)個詞(及其(qi)上(shang)下文)和其(qi)他類似(si)詞。

The rapid adoption of large language models (LLMs) in multi-agent systems has highlighted their impressive capabilities in various applications, such as collaborative problem-solving and autonomous negotiation. However, the security implications of these LLM-based multi-agent systems have not been thoroughly investigated, particularly concerning the spread of manipulated knowledge. In this paper, we investigate this critical issue by constructing a detailed threat model and a comprehensive simulation environment that mirrors real-world multi-agent deployments in a trusted platform. Subsequently, we propose a novel two-stage attack method involving Persuasiveness Injection and Manipulated Knowledge Injection to systematically explore the potential for manipulated knowledge (i.e., counterfactual and toxic knowledge) spread without explicit prompt manipulation. Our method leverages the inherent vulnerabilities of LLMs in handling world knowledge, which can be exploited by attackers to unconsciously spread fabricated information. Through extensive experiments, we demonstrate that our attack method can successfully induce LLM-based agents to spread both counterfactual and toxic knowledge without degrading their foundational capabilities during agent communication. Furthermore, we show that these manipulations can persist through popular retrieval-augmented generation frameworks, where several benign agents store and retrieve manipulated chat histories for future interactions. This persistence indicates that even after the interaction has ended, the benign agents may continue to be influenced by manipulated knowledge. Our findings reveal significant security risks in LLM-based multi-agent systems, emphasizing the imperative need for robust defenses against manipulated knowledge spread, such as introducing ``guardian'' agents and advanced fact-checking tools.

The rapid advancement of large language models (LLMs) has paved the way for the development of highly capable autonomous agents. However, existing multi-agent frameworks often struggle with integrating diverse capable third-party agents due to reliance on agents defined within their own ecosystems. They also face challenges in simulating distributed environments, as most frameworks are limited to single-device setups. Furthermore, these frameworks often rely on hard-coded communication pipelines, limiting their adaptability to dynamic task requirements. Inspired by the concept of the Internet, we propose the Internet of Agents (IoA), a novel framework that addresses these limitations by providing a flexible and scalable platform for LLM-based multi-agent collaboration. IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control. Through extensive experiments on general assistant tasks, embodied AI tasks, and retrieval-augmented generation benchmarks, we demonstrate that IoA consistently outperforms state-of-the-art baselines, showcasing its ability to facilitate effective collaboration among heterogeneous agents. IoA represents a step towards linking diverse agents in an Internet-like environment, where agents can seamlessly collaborate to achieve greater intelligence and capabilities. Our codebase has been released at \url{//github.com/OpenBMB/IoA}.

With the emergence of large language models, such as LLaMA and OpenAI GPT-3, In-Context Learning (ICL) gained significant attention due to its effectiveness and efficiency. However, ICL is very sensitive to the choice, order, and verbaliser used to encode the demonstrations in the prompt. Retrieval-Augmented ICL methods try to address this problem by leveraging retrievers to extract semantically related examples as demonstrations. While this approach yields more accurate results, its robustness against various types of adversarial attacks, including perturbations on test samples, demonstrations, and retrieved data, remains under-explored. Our study reveals that retrieval-augmented models can enhance robustness against test sample attacks, outperforming vanilla ICL with a 4.87% reduction in Attack Success Rate (ASR); however, they exhibit overconfidence in the demonstrations, leading to a 2% increase in ASR for demonstration attacks. Adversarial training can help improve the robustness of ICL methods to adversarial attacks; however, such a training scheme can be too costly in the context of LLMs. As an alternative, we introduce an effective training-free adversarial defence method, DARD, which enriches the example pool with those attacked samples. We show that DARD yields improvements in performance and robustness, achieving a 15% reduction in ASR over the baselines. Code and data are released to encourage further research: //github.com/simonucl/adv-retreival-icl

As natural language becomes the default interface for human-AI interaction, there is a need for LMs to appropriately communicate uncertainties in downstream applications. In this work, we investigate how LMs incorporate confidence in responses via natural language and how downstream users behave in response to LM-articulated uncertainties. We examine publicly deployed models and find that LMs are reluctant to express uncertainties when answering questions even when they produce incorrect responses. LMs can be explicitly prompted to express confidences, but tend to be overconfident, resulting in high error rates (an average of 47%) among confident responses. We test the risks of LM overconfidence by conducting human experiments and show that users rely heavily on LM generations, whether or not they are marked by certainty. Lastly, we investigate the preference-annotated datasets used in post training alignment and find that humans are biased against texts with uncertainty. Our work highlights new safety harms facing human-LM interactions and proposes design recommendations and mitigating strategies moving forward.

Large language models (LLMs) often exhibit undesirable behaviors, such as hallucinations and sequence repetitions. We propose to view these behaviors as fallbacks that models exhibit under uncertainty, and investigate the connection between them. We categorize fallback behaviors -- sequence repetitions, degenerate text, and hallucinations -- and extensively analyze them in models from the same family that differ by the amount of pretraining tokens, parameter count, or the inclusion of instruction-following training. Our experiments reveal a clear and consistent ordering of fallback behaviors, across all these axes: the more advanced an LLM is (i.e., trained on more tokens, has more parameters, or instruction-tuned), its fallback behavior shifts from sequence repetitions, to degenerate text, and then to hallucinations. Moreover, the same ordering is observed throughout a single generation, even for the best-performing models; as uncertainty increases, models shift from generating hallucinations to producing degenerate text and then sequence repetitions. Lastly, we demonstrate that while common decoding techniques, such as random sampling, might alleviate some unwanted behaviors like sequence repetitions, they increase harder-to-detect hallucinations.

The proliferation of large language models (LLMs) has sparked widespread and general interest due to their strong language generation capabilities, offering great potential for both industry and research. While previous research delved into the security and privacy issues of LLMs, the extent to which these models can exhibit adversarial behavior remains largely unexplored. Addressing this gap, we investigate whether common publicly available LLMs have inherent capabilities to perturb text samples to fool safety measures, so-called adversarial examples resp.~attacks. More specifically, we investigate whether LLMs are inherently able to craft adversarial examples out of benign samples to fool existing safe rails. Our experiments, which focus on hate speech detection, reveal that LLMs succeed in finding adversarial perturbations, effectively undermining hate speech detection systems. Our findings carry significant implications for (semi-)autonomous systems relying on LLMs, highlighting potential challenges in their interaction with existing systems and safety measures.

This work explores the capability of conversational chatbots powered by large language models (LLMs), to understand and characterize predicate symmetry, a cognitive linguistic function traditionally believed to be an inherent human trait. Leveraging in-context learning (ICL), a paradigm shift enabling chatbots to learn new tasks from prompts without re-training, we assess the symmetrical reasoning of five chatbots: ChatGPT 4, Huggingface chat AI, Microsoft's Copilot AI, LLaMA through Perplexity, and Gemini Advanced. Using the Symmetry Inference Sentence (SIS) dataset by Tanchip et al. (2020), we compare chatbot responses against human evaluations to gauge their understanding of predicate symmetry. Experiment results reveal varied performance among chatbots, with some approaching human-like reasoning capabilities. Gemini, for example, reaches a correlation of 0.85 with human scores, while providing a sounding justification for each symmetry evaluation. This study underscores the potential and limitations of LLMs in mirroring complex cognitive processes as symmetrical reasoning.

Adapting large language models (LLMs) to new languages typically involves continual pre-training (CT) followed by supervised fine-tuning (SFT). However, this CT-then-SFT approach struggles with limited data in the context of low-resource languages, failing to balance language modeling and task-solving capabilities. We thus propose model merging as an alternative for low-resource languages, combining models with distinct capabilities into a single model without additional training. We use model merging to develop task-solving LLMs for low-resource languages without SFT data in the target languages. Our experiments based on Llama-2-7B demonstrate that model merging effectively endows LLMs for low-resource languages with task-solving abilities, outperforming CT-then-SFT in scenarios with extremely scarce data. Observing performance saturation in model merging with more training tokens, we further analyze the merging process and introduce a slack variable to the model merging algorithm to mitigate the loss of important parameters, thereby enhancing performance. We hope that model merging can benefit more human languages suffering from data scarcity with its higher data efficiency.

The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at //github.com/Wang-ML-Lab/llm-continual-learning-survey.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

北京阿比特科技有限公司