亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural Radiance Fields (NeRFs) have become a powerful tool for modeling 3D scenes from multiple images. However, NeRFs remain difficult to segment into semantically meaningful regions. Previous approaches to 3D segmentation of NeRFs either require user interaction to isolate a single object, or they rely on 2D semantic masks with a limited number of classes for supervision. As a consequence, they generalize poorly to class-agnostic masks automatically generated in real scenes. This is attributable to the ambiguity arising from zero-shot segmentation, yielding inconsistent masks across views. In contrast, we propose a method that is robust to inconsistent segmentations and successfully decomposes the scene into a set of objects of any class. By introducing a limited number of competing object slots against which masks are matched, a meaningful object representation emerges that best explains the 2D supervision and minimizes an additional regularization term. Our experiments demonstrate the ability of our method to generate 3D panoptic segmentations on complex scenes, and extract high-quality 3D assets from NeRFs that can then be used in virtual 3D environments.

相關內容

 3D是英文“Three Dimensions”的簡稱,中文是指三維、三個維度、三個坐標,即有長、有寬、有高,換句話說,就是立體的,是相對于只有長和寬的平面(2D)而言。

Contrastive Language-Image Pre-training (CLIP) has been widely studied and applied in numerous applications. However, the emphasis on brief summary texts during pre-training prevents CLIP from understanding long descriptions. This issue is particularly acute regarding videos given that videos often contain abundant detailed contents. In this paper, we propose the VideoCLIP-XL (eXtra Length) model, which aims to unleash the long-description understanding capability of video CLIP models. Firstly, we establish an automatic data collection system and gather a large-scale VILD pre-training dataset with VIdeo and Long-Description pairs. Then, we propose Text-similarity-guided Primary Component Matching (TPCM) to better learn the distribution of feature space while expanding the long description capability. We also introduce two new tasks namely Detail-aware Description Ranking (DDR) and Hallucination-aware Description Ranking (HDR) for further understanding improvement. Finally, we construct a Long Video Description Ranking (LVDR) benchmark for evaluating the long-description capability more comprehensively. Extensive experimental results on widely-used text-video retrieval benchmarks with both short and long descriptions and our LVDR benchmark can fully demonstrate the effectiveness of our method.

Decision Tree (DT) Learning is a fundamental problem in Interpretable Machine Learning, yet it poses a formidable optimisation challenge. Despite numerous efforts dating back to the early 1990's, practical algorithms have only recently emerged, primarily leveraging Dynamic Programming (DP) and Branch & Bound (B&B) techniques. These methods fall into two categories: algorithms like DL8.5, MurTree and STreeD utilise an efficient DP strategy but lack effective bounds for pruning the search space; while algorithms like OSDT and GOSDT employ more efficient pruning bounds but at the expense of a less refined DP strategy. We introduce Branches, a new algorithm that combines the strengths of both approaches. Using DP and B&B with a novel analytical bound for efficient pruning, Branches offers both speed and sparsity optimisation. Unlike other methods, it also handles non-binary features. Theoretical analysis shows its lower complexity compared to existing methods, and empirical results confirm that Branches outperforms the state-of-the-art in speed, iterations, and optimality.

Dynamic grasping of moving objects in complex, continuous motion scenarios remains challenging. Reinforcement Learning (RL) has been applied in various robotic manipulation tasks, benefiting from its closed-loop property. However, existing RL-based methods do not fully explore the potential for enhancing visual representations. In this letter, we propose a novel framework called Grasps As Points for RL (GAP-RL) to effectively and reliably grasp moving objects. By implementing a fast region-based grasp detector, we build a Grasp Encoder by transforming 6D grasp poses into Gaussian points and extracting grasp features as a higher-level abstraction than the original object point features. Additionally, we develop a Graspable Region Explorer for real-world deployment, which searches for consistent graspable regions, enabling smoother grasp generation and stable policy execution. To assess the performance fairly, we construct a simulated dynamic grasping benchmark involving objects with various complex motions. Experiment results demonstrate that our method effectively generalizes to novel objects and unseen dynamic motions compared to other baselines. Real-world experiments further validate the framework's sim-to-real transferability.

Video Large Language Models (Video-LLMs) have made remarkable progress in video understanding tasks. However, they are constrained by the maximum length of input tokens, making it impractical to input entire videos. Existing frame selection approaches, such as uniform frame sampling and text-frame retrieval, fail to account for the information density variations in the videos or the complex instructions in the tasks, leading to sub-optimal performance. In this paper, we propose Frame-Voyager that learns to query informative frame combinations, based on the given textual queries in the task. To train Frame-Voyager, we introduce a new data collection and labeling pipeline, by ranking frame combinations using a pre-trained Video-LLM. Given a video of M frames, we traverse its T-frame combinations, feed them into a Video-LLM, and rank them based on Video-LLM's prediction losses. Using this ranking as supervision, we train Frame-Voyager to query the frame combinations with lower losses. In experiments, we evaluate Frame-Voyager on four Video Question Answering benchmarks by plugging it into two different Video-LLMs. The experimental results demonstrate that Frame-Voyager achieves impressive results in all settings, highlighting its potential as a plug-and-play solution for Video-LLMs.

Classification tasks are typically handled using Machine Learning (ML) models, which lack a balance between accuracy and interpretability. This paper introduces a new approach to using Large Language Models (LLMs) for classification tasks in an explainable way. Unlike ML models that rely heavily on data cleaning and feature engineering, this method streamlines the process using LLMs. This paper proposes a new concept called "Language Model Learning (LML)" powered by a new method called "Data-Augmented Prediction (DAP)". The classification is performed by LLMs using a method similar to humans manually exploring and understanding the data and deciding classifications using data as a reference. In the LML process, a dataset is summarized and evaluated to determine the features that lead to the classification of each label the most. In the process of DAP, the system uses the data summary and a row of the testing dataset to automatically generate a query, which is used to retrieve relevant rows from the dataset. A classification is generated by the LLM using data summary and relevant rows, ensuring satisfactory accuracy even with complex data using context-aware decision-making. LML and DAP unlock the possibilities of new applications. The proposed method uses the words "Act as an Explainable Machine Learning Model" in the prompt to enhance the interpretability of the predictions by allowing users to review the logic behind each prediction. In some test cases, the system scored an accuracy above 90%, proving the effectiveness of the system and its potential to outperform conventional ML models in various scenarios. The code is available at //github.com/Pro-GenAI/LML-DAP

Large Language Models (LLMs) have shown promising performance in code generation. However, how to reliably evaluate code generated by LLMs remains an unresolved problem. This paper presents CodeJudge, a code evaluation framework that leverages LLMs to evaluate the semantic correctness of generated code without the need for test cases. We investigate different ways to guide the LLM in performing "slow thinking" to arrive at an in-depth and reliable evaluation. We experimented with four LLMs as evaluators on four code generation datasets and five programming languages. The results show that CodeJudge significantly outperformed existing methods in most settings. Furthermore, compared with a SOTA GPT-3.5-based code evaluation method, CodeJudge achieved better results even when using a much smaller model, Llama-3-8B-Instruct. Our code and datasets are available on GitHub //github.com/VichyTong/CodeJudge.

3D Gaussian splatting (3DGS) offers the capability to achieve real-time high quality 3D scene rendering. However, 3DGS assumes that the scene is in a clear medium environment and struggles to generate satisfactory representations in underwater scenes, where light absorption and scattering are prevalent and moving objects are involved. To overcome these, we introduce a novel Gaussian Splatting-based method, UW-GS, designed specifically for underwater applications. It introduces a color appearance that models distance-dependent color variation, employs a new physics-based density control strategy to enhance clarity for distant objects, and uses a binary motion mask to handle dynamic content. Optimized with a well-designed loss function supporting for scattering media and strengthened by pseudo-depth maps, UW-GS outperforms existing methods with PSNR gains up to 1.26dB. To fully verify the effectiveness of the model, we also developed a new underwater dataset, S-UW, with dynamic object masks.

Convolutional Neural Networks (CNNs) and Transformers have achieved remarkable success in computer vision tasks. However, their deep architectures often lead to high computational redundancy, making them less suitable for resource-constrained environments, such as edge devices. This paper introduces ParFormer, a novel vision transformer that addresses this challenge by incorporating a Parallel Mixer and a Sparse Channel Attention Patch Embedding (SCAPE). By combining convolutional and attention mechanisms, ParFormer improves feature extraction. This makes spatial feature extraction more efficient and cuts down on unnecessary computation. The SCAPE module further reduces computational redundancy while preserving essential feature information during down-sampling. Experimental results on the ImageNet-1K dataset show that ParFormer-T achieves 78.9\% Top-1 accuracy with a high throughput on a GPU that outperforms other small models with 2.56$\times$ higher throughput than MobileViT-S, 0.24\% faster than FasterNet-T2, and 1.79$\times$ higher than EdgeNeXt-S. For edge device deployment, ParFormer-T excels with a throughput of 278.1 images/sec, which is 1.38 $\times$ higher than EdgeNeXt-S and 2.36$\times$ higher than MobileViT-S, making it highly suitable for real-time applications in resource-constrained settings. The larger variant, ParFormer-L, reaches 83.5\% Top-1 accuracy, offering a balanced trade-off between accuracy and efficiency, surpassing many state-of-the-art models. In COCO object detection, ParFormer-M achieves 40.7 AP for object detection and 37.6 AP for instance segmentation, surpassing models like ResNet-50, PVT-S and PoolFormer-S24 with significantly higher efficiency. These results validate ParFormer as a highly efficient and scalable model for both high-performance and resource-constrained scenarios, making it an ideal solution for edge-based AI applications.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

北京阿比特科技有限公司