CLIP models perform remarkably well on zero-shot classification and retrieval tasks. But recent studies have shown that learnt representations in CLIP are not well suited for dense prediction tasks like object detection, semantic segmentation or depth estimation. More recently, multi-stage training methods for CLIP models was introduced to mitigate the weak performance of CLIP on downstream tasks. In this work, we find that simply improving the quality of captions in image-text datasets improves the quality of CLIP's visual representations, resulting in significant improvement on downstream dense prediction vision tasks. In fact, we find that CLIP pretraining with good quality captions can surpass recent supervised, self-supervised and weakly supervised pretraining methods. We show that when CLIP model with ViT-B/16 as image encoder is trained on well aligned image-text pairs it obtains 12.1% higher mIoU and 11.5% lower RMSE on semantic segmentation and depth estimation tasks over recent state-of-the-art Masked Image Modeling (MIM) pretraining methods like Masked Autoencoder (MAE). We find that mobile architectures also benefit significantly from CLIP pretraining. A recent mobile vision architecture, MCi2, with CLIP pretraining obtains similar performance as Swin-L, pretrained on ImageNet-22k for semantic segmentation task while being 6.1$\times$ smaller. Moreover, we show that improving caption quality results in $10\times$ data efficiency when finetuning for dense prediction tasks.
ASR models are commonly trained with the cross-entropy criterion to increase the probability of a target token sequence. While optimizing the probability of all tokens in the target sequence is sensible, one may want to de-emphasize tokens that reflect transcription errors. In this work, we propose a novel token-weighted RNN-T criterion that augments the RNN-T objective with token-specific weights. The new objective is used for mitigating accuracy loss from transcriptions errors in the training data, which naturally appear in two settings: pseudo-labeling and human annotation errors. Experiments results show that using our method for semi-supervised learning with pseudo-labels leads to a consistent accuracy improvement, up to 38% relative. We also analyze the accuracy degradation resulting from different levels of WER in the reference transcription, and show that token-weighted RNN-T is suitable for overcoming this degradation, recovering 64%-99% of the accuracy loss.
Diffusion models have demonstrated remarkable performance in image generation tasks, paving the way for powerful AIGC applications. However, these widely-used generative models can also raise security and privacy concerns, such as copyright infringement, and sensitive data leakage. To tackle these issues, we propose a method, Unlearnable Diffusion Perturbation, to safeguard images from unauthorized exploitation. Our approach involves designing an algorithm to generate sample-wise perturbation noise for each image to be protected. This imperceptible protective noise makes the data almost unlearnable for diffusion models, i.e., diffusion models trained or fine-tuned on the protected data cannot generate high-quality and diverse images related to the protected training data. Theoretically, we frame this as a max-min optimization problem and introduce EUDP, a noise scheduler-based method to enhance the effectiveness of the protective noise. We evaluate our methods on both Denoising Diffusion Probabilistic Model and Latent Diffusion Models, demonstrating that training diffusion models on the protected data lead to a significant reduction in the quality of the generated images. Especially, the experimental results on Stable Diffusion demonstrate that our method effectively safeguards images from being used to train Diffusion Models in various tasks, such as training specific objects and styles. This achievement holds significant importance in real-world scenarios, as it contributes to the protection of privacy and copyright against AI-generated content.
Development of multimodal models has marked a significant step forward in how machines understand videos. These models have shown promise in analyzing short video clips. However, when it comes to longer formats like movies, they often fall short. The main hurdles are the lack of high-quality, diverse video data and the intensive work required to collect or annotate such data. In face of these challenges, we propose MovieLLM, a novel framework designed to synthesize consistent and high-quality video data for instruction tuning. The pipeline is carefully designed to control the style of videos by improving textual inversion technique with powerful text generation capability of GPT-4. As the first framework to do such thing, our approach stands out for its flexibility and scalability, empowering users to create customized movies with only one description. This makes it a superior alternative to traditional data collection methods. Our extensive experiments validate that the data produced by MovieLLM significantly improves the performance of multimodal models in understanding complex video narratives, overcoming the limitations of existing datasets regarding scarcity and bias.
In this work, we explore the possibility of training high-parameter 3D Gaussian splatting (3DGS) models on large-scale, high-resolution datasets. We design a general model parallel training method for 3DGS, named RetinaGS, which uses a proper rendering equation and can be applied to any scene and arbitrary distribution of Gaussian primitives. It enables us to explore the scaling behavior of 3DGS in terms of primitive numbers and training resolutions that were difficult to explore before and surpass previous state-of-the-art reconstruction quality. We observe a clear positive trend of increasing visual quality when increasing primitive numbers with our method. We also demonstrate the first attempt at training a 3DGS model with more than one billion primitives on the full MatrixCity dataset that attains a promising visual quality.
Self-supervised (SSL) models have shown great performance in various downstream tasks. However, they are typically developed for limited languages, and may encounter new languages in real-world. Developing a SSL model for each new language is costly. Thus, it is vital to figure out how to efficiently adapt existed SSL models to a new language without impairing its original abilities. We propose adaptation methods which integrate LoRA to existed SSL models to extend new language. We also develop preservation strategies which include data combination and re-clustering to retain abilities on existed languages. Applied to mHuBERT, we investigate their effectiveness on speech re-synthesis task. Experiments show that our adaptation methods enable mHuBERT to be applied to a new language (Mandarin) with MOS value increased about 1.6 and the relative value of WER reduced up to 61.72%. Also, our preservation strategies ensure that the performance on both existed and new languages remains intact.
Decompilation aims to convert binary code to high-level source code, but traditional tools like Ghidra often produce results that are difficult to read and execute. Motivated by the advancements in Large Language Models (LLMs), we propose LLM4Decompile, the first and largest open-source LLM series (1.3B to 33B) trained to decompile binary code. We optimize the LLM training process and introduce the LLM4Decompile-End models to decompile binary directly. The resulting models significantly outperform GPT-4o and Ghidra on the HumanEval and ExeBench benchmarks by over 100%. Additionally, we improve the standard refinement approach to fine-tune the LLM4Decompile-Ref models, enabling them to effectively refine the decompiled code from Ghidra and achieve a further 16.2% improvement over the LLM4Decompile-End. LLM4Decompile demonstrates the potential of LLMs to revolutionize binary code decompilation, delivering remarkable improvements in readability and executability while complementing conventional tools for optimal results. Our code, dataset, and models are released at //github.com/albertan017/LLM4Decompile
Diffusion models are powerful generative models that allow for precise control over the characteristics of the generated samples. While these diffusion models trained on large datasets have achieved success, there is often a need to introduce additional controls in downstream fine-tuning processes, treating these powerful models as pre-trained diffusion models. This work presents a novel method based on reinforcement learning (RL) to add additional controls, leveraging an offline dataset comprising inputs and corresponding labels. We formulate this task as an RL problem, with the classifier learned from the offline dataset and the KL divergence against pre-trained models serving as the reward functions. We introduce our method, $\textbf{CTRL}$ ($\textbf{C}$onditioning pre-$\textbf{T}$rained diffusion models with $\textbf{R}$einforcement $\textbf{L}$earning), which produces soft-optimal policies that maximize the abovementioned reward functions. We formally demonstrate that our method enables sampling from the conditional distribution conditioned on additional controls during inference. Our RL-based approach offers several advantages over existing methods. Compared to commonly used classifier-free guidance, our approach improves sample efficiency, and can greatly simplify offline dataset construction by exploiting conditional independence between the inputs and additional controls. Furthermore, unlike classifier guidance, we avoid the need to train classifiers from intermediate states to additional controls.
Diffusion models have emerged as a prominent class of generative models, surpassing previous methods regarding sample quality and training stability. Recent works have shown the advantages of diffusion models in improving reinforcement learning (RL) solutions, including as trajectory planners, expressive policy classes, data synthesizers, etc. This survey aims to provide an overview of the advancements in this emerging field and hopes to inspire new avenues of research. First, we examine several challenges encountered by current RL algorithms. Then, we present a taxonomy of existing methods based on the roles played by diffusion models in RL and explore how the existing challenges are addressed. We further outline successful applications of diffusion models in various RL-related tasks while discussing the limitations of current approaches. Finally, we conclude the survey and offer insights into future research directions, focusing on enhancing model performance and applying diffusion models to broader tasks. We are actively maintaining a GitHub repository for papers and other related resources in applying diffusion models in RL: //github.com/apexrl/Diff4RLSurvey .
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/