亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces CADgpt, an innovative plugin integrating Natural Language Processing (NLP) with Rhino3D for enhancing 3D modelling in computer-aided design (CAD) environments. Leveraging OpenAI's GPT-4, CADgpt simplifies the CAD interface, enabling users, particularly beginners, to perform complex 3D modelling tasks through intuitive natural language commands. This approach significantly reduces the learning curve associated with traditional CAD software, fostering a more inclusive and engaging educational environment. The paper discusses CADgpt's technical architecture, including its integration within Rhino3D and the adaptation of GPT-4 capabilities for CAD tasks. It presents case studies demonstrating CADgpt's efficacy in various design scenarios, highlighting its potential to democratise design education by making sophisticated design tools accessible to a broader range of students. The discussion further explores CADgpt's implications for pedagogy and curriculum development, emphasising its role in enhancing creative exploration and conceptual thinking in design education. Keywords: Natural Language Processing, Computer-Aided Design, 3D Modelling, Design Automation, Design Education, Architectural Education

相關內容

《計算機輔助設計》是一份領先的國際期刊,為學術界和工業界提供有關計算機應用于設計的研究和發展的重要論文。計算機輔助設計邀請論文報告新的研究以及新穎或特別重要的應用,在廣泛的主題中,跨越所有階段的設計過程,從概念創造到制造超越。 官網地址:

This paper proposes an interpretation of RLAIF as Bayesian inference by introducing distilled Self-Critique (dSC), which refines the outputs of a LLM through a Gibbs sampler that is later distilled into a fine-tuned model. Only requiring synthetic data, dSC is exercised in experiments regarding safety, sentiment, and privacy control, showing it can be a viable and cheap alternative to align LLMs. Code released at \url{//github.com/vicgalle/distilled-self-critique}.

In this work, we present SynTable, a unified and flexible Python-based dataset generator built using NVIDIA's Isaac Sim Replicator Composer for generating high-quality synthetic datasets for unseen object amodal instance segmentation of cluttered tabletop scenes. Our dataset generation tool can render a complex 3D scene containing object meshes, materials, textures, lighting, and backgrounds. Metadata, such as modal and amodal instance segmentation masks, occlusion masks, depth maps, bounding boxes, and material properties, can be generated to automatically annotate the scene according to the users' requirements. Our tool eliminates the need for manual labeling in the dataset generation process while ensuring the quality and accuracy of the dataset. In this work, we discuss our design goals, framework architecture, and the performance of our tool. We demonstrate the use of a sample dataset generated using SynTable by ray tracing for training a state-of-the-art model, UOAIS-Net. The results show significantly improved performance in Sim-to-Real transfer when evaluated on the OSD-Amodal dataset. We offer this tool as an open-source, easy-to-use, photorealistic dataset generator for advancing research in deep learning and synthetic data generation.

This paper explores the challenges posed by aspect-based sentiment classification (ABSC) within pretrained language models (PLMs), with a particular focus on contextualization and hallucination issues. In order to tackle these challenges, we introduce CARBD-Ko (a Contextually Annotated Review Benchmark Dataset for Aspect-Based Sentiment Classification in Korean), a benchmark dataset that incorporates aspects and dual-tagged polarities to distinguish between aspect-specific and aspect-agnostic sentiment classification. The dataset consists of sentences annotated with specific aspects, aspect polarity, aspect-agnostic polarity, and the intensity of aspects. To address the issue of dual-tagged aspect polarities, we propose a novel approach employing a Siamese Network. Our experimental findings highlight the inherent difficulties in accurately predicting dual-polarities and underscore the significance of contextualized sentiment analysis models. The CARBD-Ko dataset serves as a valuable resource for future research endeavors in aspect-level sentiment classification.

This paper introduces a novel approach using Large Language Models (LLMs) integrated into an agent framework for flexible and efficient personal mobility generation. LLMs overcome the limitations of previous models by efficiently processing semantic data and offering versatility in modeling various tasks. Our approach addresses the critical need to align LLMs with real-world urban mobility data, focusing on three research questions: aligning LLMs with rich activity data, developing reliable activity generation strategies, and exploring LLM applications in urban mobility. The key technical contribution is a novel LLM agent framework that accounts for individual activity patterns and motivations, including a self-consistency approach to align LLMs with real-world activity data and a retrieval-augmented strategy for interpretable activity generation. In experimental studies, comprehensive validation is performed using real-world data. This research marks the pioneering work of designing an LLM agent framework for activity generation based on real-world human activity data, offering a promising tool for urban mobility analysis.

Thanks to advances in deep learning techniques, Human Pose Estimation (HPE) has achieved significant progress in natural scenarios. However, these models perform poorly in artificial scenarios such as painting and sculpture due to the domain gap, constraining the development of virtual reality and augmented reality. With the growth of model size, retraining the whole model on both natural and artificial data is computationally expensive and inefficient. Our research aims to bridge the domain gap between natural and artificial scenarios with efficient tuning strategies. Leveraging the potential of language models, we enhance the adaptability of traditional pose estimation models across diverse scenarios with a novel framework called VLPose. VLPose leverages the synergy between language and vision to extend the generalization and robustness of pose estimation models beyond the traditional domains. Our approach has demonstrated improvements of 2.26% and 3.74% on HumanArt and MSCOCO, respectively, compared to state-of-the-art tuning strategies.

Making sense of unstructured text datasets is perennially difficult, yet increasingly relevant with Large Language Models. Data workers often rely on dataset summaries, especially distributions of various derived features. Some features, like toxicity or topics, are relevant to many datasets, but many interesting features are domain specific: instruments and genres for a music dataset, or diseases and symptoms for a medical dataset. Accordingly, data workers often run custom analyses for each dataset, which is cumbersome and difficult. We present AutoHistograms, a visualization tool leveragingLLMs. AutoHistograms automatically identifies relevant features, visualizes them with histograms, and allows the user to interactively query the dataset for categories of entities and create new histograms. In a user study with 10 data workers (n=10), we observe that participants can quickly identify insights and explore the data using AutoHistograms, and conceptualize a broad range of applicable use cases. Together, this tool and user study contributeto the growing field of LLM-assisted sensemaking tools.

Reconstructing visual stimuli from functional Magnetic Resonance Imaging (fMRI) based on Latent Diffusion Models (LDM) provides a fine-grained retrieval of the brain. A challenge persists in reconstructing a cohesive alignment of details (such as structure, background, texture, color, etc.). Moreover, LDMs would generate different image results even under the same conditions. For these, we first uncover the neuroscientific perspective of LDM-based methods that is top-down creation based on pre-trained knowledge from massive images but lack of detail-driven bottom-up perception resulting in unfaithful details. We propose NeuralDiffuser which introduces primary visual feature guidance to provide detail cues in the form of gradients, extending the bottom-up process for LDM-based methods to achieve faithful semantics and details. We also developed a novel guidance strategy to ensure the consistency of repeated reconstructions rather than a variety of results. We obtain the state-of-the-art performance of NeuralDiffuser on the Natural Senses Dataset (NSD), which offers more faithful details and consistent results.

Multimodal reasoning stands as a pivotal capability for large vision-language models (LVLMs). The integration with Domain-Specific Languages (DSL), offering precise visual representations, equips these models with the opportunity to execute more accurate reasoning in complex and professional domains. However, the vanilla Chain-of-Thought (CoT) prompting method faces challenges in effectively leveraging the unique strengths of visual and DSL representations, primarily due to their differing reasoning mechanisms. Additionally, it often falls short in addressing critical steps in multi-step reasoning tasks. To mitigate these challenges, we introduce the \underline{B}i-Modal \underline{B}ehavioral \underline{A}lignment (BBA) prompting method, designed to maximize the potential of DSL in augmenting complex multi-modal reasoning tasks. This method initiates by guiding LVLMs to create separate reasoning chains for visual and DSL representations. Subsequently, it aligns these chains by addressing any inconsistencies, thus achieving a cohesive integration of behaviors from different modalities. Our experiments demonstrate that BBA substantially improves the performance of GPT-4V(ision) on geometry problem solving ($28.34\% \to 34.22\%$), chess positional advantage prediction ($42.08\% \to 46.99\%$) and molecular property prediction ($77.47\% \to 83.52\%$).

This paper proposes an Intrusion Detection System (IDS) employing the Harris Hawks Optimization algorithm (HHO) to optimize Multilayer Perceptron learning by optimizing bias and weight parameters. HHO-MLP aims to select optimal parameters in its learning process to minimize intrusion detection errors in networks. HHO-MLP has been implemented using EvoloPy NN framework, an open-source Python tool specialized for training MLPs using evolutionary algorithms. For purposes of comparing the HHO model against other evolutionary methodologies currently available, specificity and sensitivity measures, accuracy measures, and mse and rmse measures have been calculated using KDD datasets. Experiments have demonstrated the HHO MLP method is effective at identifying malicious patterns. HHO-MLP has been tested against evolutionary algorithms like Butterfly Optimization Algorithm (BOA), Grasshopper Optimization Algorithms (GOA), and Black Widow Optimizations (BOW), with validation by Random Forest (RF), XG-Boost. HHO-MLP showed superior performance by attaining top scores with accuracy rate of 93.17%, sensitivity level of 89.25%, and specificity percentage of 95.41%.

Collecting supporting evidence from large corpora of text (e.g., Wikipedia) is of great challenge for open-domain Question Answering (QA). Especially, for multi-hop open-domain QA, scattered evidence pieces are required to be gathered together to support the answer extraction. In this paper, we propose a new retrieval target, hop, to collect the hidden reasoning evidence from Wikipedia for complex question answering. Specifically, the hop in this paper is defined as the combination of a hyperlink and the corresponding outbound link document. The hyperlink is encoded as the mention embedding which models the structured knowledge of how the outbound link entity is mentioned in the textual context, and the corresponding outbound link document is encoded as the document embedding representing the unstructured knowledge within it. Accordingly, we build HopRetriever which retrieves hops over Wikipedia to answer complex questions. Experiments on the HotpotQA dataset demonstrate that HopRetriever outperforms previously published evidence retrieval methods by large margins. Moreover, our approach also yields quantifiable interpretations of the evidence collection process.

北京阿比特科技有限公司