亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Longitudinal processes often pose nonlinear change patterns. Latent basis growth models (LBGMs) provide a versatile solution without requiring specific functional forms. Building on the LBGM specification for unequally-spaced waves and individual occasions proposed by Liu and Perera (2023), we extend LBGMs to multivariate longitudinal outcomes. This provides a unified approach to nonlinear, interconnected trajectories. Simulation studies demonstrate that the proposed model can provide unbiased and accurate estimates with target coverage probabilities for the parameters of interest. Real-world analyses of reading and mathematics scores demonstrates its effectiveness in analyzing joint developmental processes that vary in temporal patterns. Computational code is included.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 支持向量機 · 推斷 · 蒙特卡羅 · MoDELS ·
2023 年 12 月 20 日

State space models (SSMs) are widely used to describe dynamic systems. However, when the likelihood of the observations is intractable, parameter inference for SSMs cannot be easily carried out using standard Markov chain Monte Carlo or sequential Monte Carlo methods. In this paper, we propose a particle Gibbs sampler as a general strategy to handle SSMs with intractable likelihoods in the approximate Bayesian computation (ABC) setting. The proposed sampler incorporates a conditional auxiliary particle filter, which can help mitigate the weight degeneracy often encountered in ABC. To illustrate the methodology, we focus on a classic stochastic volatility model (SVM) used in finance and econometrics for analyzing and interpreting volatility. Simulation studies demonstrate the accuracy of our sampler for SVM parameter inference, compared to existing particle Gibbs samplers based on the conditional bootstrap filter. As a real data application, we apply the proposed sampler for fitting an SVM to S&P 500 Index time-series data during the 2008 financial crisis.

Industrial process tomography (IPT) is a specialized imaging technique widely used in industrial scenarios for process supervision and control. Today, augmented/mixed reality (AR/MR) is increasingly being adopted in many industrial occasions, even though there is still an obvious gap when it comes to IPT. To bridge this gap, we propose the first systematic AR approach using optical see-through (OST) head mounted displays (HMDs) with comparative evaluation for domain users towards IPT visualization analysis. The proof-of-concept was demonstrated by a within-subject user study (n=20) with counterbalancing design. Both qualitative and quantitative measurements were investigated. The results showed that our AR approach outperformed conventional settings for IPT data visualization analysis in bringing higher understandability, reduced task completion time, lower error rates for domain tasks, increased usability with enhanced user experience, and a better recommendation level. We summarize the findings and suggest future research directions for benefiting IPT users with AR/MR.

Developing computational models of neural response is crucial for understanding sensory processing and neural computations. Current state-of-the-art neural network methods use temporal filters to handle temporal dependencies, resulting in an unrealistic and inflexible processing paradigm. Meanwhile, these methods target trial-averaged firing rates and fail to capture important features in spike trains. This work presents the temporal conditioning spiking latent variable models (TeCoS-LVM) to simulate the neural response to natural visual stimuli. We use spiking neurons to produce spike outputs that directly match the recorded trains. This approach helps to avoid losing information embedded in the original spike trains. We exclude the temporal dimension from the model parameter space and introduce a temporal conditioning operation to allow the model to adaptively explore and exploit temporal dependencies in stimuli sequences in a {\it natural paradigm}. We show that TeCoS-LVM models can produce more realistic spike activities and accurately fit spike statistics than powerful alternatives. Additionally, learned TeCoS-LVM models can generalize well to longer time scales. Overall, while remaining computationally tractable, our model effectively captures key features of neural coding systems. It thus provides a useful tool for building accurate predictive computational accounts for various sensory perception circuits.

Cognitive diagnosis models have been popularly used in fields such as education, psychology, and social sciences. While parametric likelihood estimation is a prevailing method for fitting cognitive diagnosis models, nonparametric methodologies are attracting increasing attention due to their ease of implementation and robustness, particularly when sample sizes are relatively small. However, existing clustering consistency results of the nonparametric estimation methods often rely on certain restrictive conditions, which may not be easily satisfied in practice. In this article, the clustering consistency of the general nonparametric classification method is reestablished under weaker and more practical conditions.

We present a result according to which certain functions of covariance matrices are maximized at scalar multiples of the identity matrix. This is used to show that experimental designs that are optimal under an assumption of independent, homoscedastic responses can be minimax robust, in broad classes of alternate covariance structures. In particular it can justify the common practice of disregarding possible dependence, or heteroscedasticity, at the design stage of an experiment.

With the rapid progress in virtual reality (VR) technology, the scope of VR applications has greatly expanded across various domains. However, the superiority of VR training over traditional methods and its impact on learning efficacy are still uncertain. To investigate whether VR training is more effective than traditional methods, we designed virtual training systems for mechanical assembly on both VR and desktop platforms, subsequently conducting pre-test and post-test experiments. A cohort of 53 students, all enrolled in engineering drawing course without prior knowledge distinctions, was randomly divided into three groups: physical training, desktop virtual training, and immersive VR training. Our investigation utilized analysis of covariance (ANCOVA) to examine the differences in post-test scores among the three groups while controlling for pre-test scores. The group that received VR training showed the highest scores on the post-test. Another facet of our study delved into the presence of the virtual system. We developed a specialized scale to assess this aspect for our research objectives. Our findings indicate that VR training can enhance the sense of presence, particularly in terms of sensory factors and realism factors. Moreover, correlation analysis uncovers connections between the various dimensions of presence. This study confirms that using VR training can improve learning efficacy and the presence in the context of mechanical assembly, surpassing traditional training methods. Furthermore, it provides empirical evidence supporting the integration of VR technology in higher education and engineering training. This serves as a reference for the practical application of VR technology in different fields.

Latent variable models (LVMs) represent observed variables by parameterized functions of latent variables. Prominent examples of LVMs for unsupervised learning are probabilistic PCA or probabilistic SC which both assume a weighted linear summation of the latents to determine the mean of a Gaussian distribution for the observables. In many cases, however, observables do not follow a Gaussian distribution. For unsupervised learning, LVMs which assume specific non-Gaussian observables have therefore been considered. Already for specific choices of distributions, parameter optimization is challenging and only a few previous contributions considered LVMs with more generally defined observable distributions. Here, we consider LVMs that are defined for a range of different distributions, i.e., observables can follow any (regular) distribution of the exponential family. The novel class of LVMs presented is defined for binary latents, and it uses maximization in place of summation to link the latents to observables. To derive an optimization procedure, we follow an EM approach for maximum likelihood parameter estimation. We show that a set of very concise parameter update equations can be derived which feature the same functional form for all exponential family distributions. The derived generic optimization can consequently be applied to different types of metric data as well as to different types of discrete data. Also, the derived optimization equations can be combined with a recently suggested variational acceleration which is likewise generically applicable to the LVMs considered here. So, the combination maintains generic and direct applicability of the derived optimization procedure, but, crucially, enables efficient scalability. We numerically verify our analytical results and discuss some potential applications such as learning of variance structure, noise type estimation and denoising.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司