We construct finite element approximations of the Levi-Civita connection and its curvature on triangulations of oriented two-dimensional manifolds. Our construction relies on the Regge finite elements, which are piecewise polynomial symmetric (0,2)-tensor fields possessing single-valued tangential-tangential components along element interfaces. When used to discretize the Riemannian metric tensor, these piecewise polynomial tensor fields do not possess enough regularity to define connections and curvature in the classical sense, but we show how to make sense of these quantities in a distributional sense. We then show that these distributional quantities converge in certain dual Sobolev norms to their smooth counterparts under refinement of the triangulation. We also discuss projections of the distributional curvature and distributional connection onto piecewise polynomial finite element spaces. We show that the relevant projection operators commute with certain linearized differential operators, yielding a commutative diagram of differential complexes.
In this article, we study curvature-like feature value of data sets in Euclidean spaces. First, we formulate such curvature functions with desirable properties under the manifold hypothesis. Then we make a test property for the validity of the curvature function by the law of large numbers, and check it for the function we construct by numerical experiments. These experiments also suggest the conjecture that the mean of the curvature of sample manifolds coincides with the curvature of the mean manifold. Our construction is based on the dimension estimation by the principal component analysis and the Gaussian curvature of hypersurfaces. Our function depends on provisional parameters $\varepsilon, \delta$, and we suggest dealing with the resulting functions as a function of these parameters to get some robustness. As an application, we propose a method to decompose data sets into some parts reflecting local structure. For this, we embed the data sets into higher dimensional Euclidean space using curvature values and cluster them in the embedding space. We also give some computational experiments that support the effectiveness of our methods.
We introduce a new method for Estimation of Signal Parameters based on Iterative Rational Approximation (ESPIRA) for sparse exponential sums. Our algorithm uses the AAA algorithm for rational approximation of the discrete Fourier transform of the given equidistant signal values. We show that ESPIRA can be interpreted as a matrix pencil method applied to Loewner matrices. These Loewner matrices are closely connected with the Hankel matrices which are usually employed for signal recovery. Due to the construction of the Loewner matrices via an adaptive selection of index sets, the matrix pencil method is stabilized. ESPIRA achieves similar recovery results for exact data as ESPRIT and the matrix pencil method but with less computational effort. Moreover, ESPIRA strongly outperforms ESPRIT and the matrix pencil method for noisy data and for signal approximation by short exponential sums.
A smooth and strictly convex function on an open convex domain induces both (1) a Hessian manifold with respect to the standard flat Euclidean connection, and (2) a dually flat space of information geometry. We first review these constructions and illustrate how to instantiate them for (a) full regular exponential families from their partition functions, (b) regular homogeneous cones from their characteristic functions, and (c) mixture families from their Shannon negentropy functions. Although these structures can be explicitly built for many common examples of the first two classes, the differential entropy of a continuous statistical mixture with distinct prescribed density components sharing the same support is hitherto not known in closed form, hence forcing implementations of mixture family manifolds in practice using Monte Carlo sampling. In this work, we report a notable exception: The family of mixtures defined as the convex combination of two prescribed and distinct Cauchy distributions. As a byproduct, we report closed-form formula for the Jensen-Shannon divergence between two mixtures of two prescribed Cauchy components.
We show that the Wynn recurrence (the missing identity of Frobenius of the Pad\'{e} approximation theory) can be incorporated into the theory of integrable systems as a reduction of the discrete Schwarzian Kadomtsev-Petviashvili equation. This allows, in particular, to present the geometric meaning of the recurrence as a construction of the appropriately constrained quadrangular set of points. The interpretation is valid for a projective line over arbitrary skew field what motivates to consider non-commutative Pad\'{e} theory. We transfer the corresponding elements, including the Frobenius identities, to the non-commutative level using the quasideterminants. Using an example of the characteristic series of the Fibonacci language we present an application of the theory to the regular languages. We introduce the non-commutative version of the discrete-time Toda lattice equations together with their integrability structure. Finally, we discuss application of the Wynn recurrence in a different context of the geometric theory of discrete analytic functions.
The entropy is a measure of uncertainty that plays a central role in information theory. When the distribution of the data is unknown, an estimate of the entropy needs be obtained from the data sample itself. We propose a semi-parametric estimate, based on a mixture model approximation of the distribution of interest. The estimate can rely on any type of mixture, but we focus on Gaussian mixture model to demonstrate its accuracy and versatility. Performance of the proposed approach is assessed through a series of simulation studies. We also illustrate its use on two real-life data examples.
We study the class of first-order locally-balanced Metropolis--Hastings algorithms introduced in Livingstone & Zanella (2021). To choose a specific algorithm within the class the user must select a balancing function $g:\mathbb{R} \to \mathbb{R}$ satisfying $g(t) = tg(1/t)$, and a noise distribution for the proposal increment. Popular choices within the class are the Metropolis-adjusted Langevin algorithm and the recently introduced Barker proposal. We first establish a universal limiting optimal acceptance rate of 57% and scaling of $n^{-1/3}$ as the dimension $n$ tends to infinity among all members of the class under mild smoothness assumptions on $g$ and when the target distribution for the algorithm is of the product form. In particular we obtain an explicit expression for the asymptotic efficiency of an arbitrary algorithm in the class, as measured by expected squared jumping distance. We then consider how to optimise this expression under various constraints. We derive an optimal choice of noise distribution for the Barker proposal, optimal choice of balancing function under a Gaussian noise distribution, and optimal choice of first-order locally-balanced algorithm among the entire class, which turns out to depend on the specific target distribution. Numerical simulations confirm our theoretical findings and in particular show that a bi-modal choice of noise distribution in the Barker proposal gives rise to a practical algorithm that is consistently more efficient than the original Gaussian version.
We investigate the quality of space approximation of a class of stochastic integral equations of convolution type with Gaussian noise. Such equations arise, for example, when considering mild solutions of stochastic fractional order partial differential equations but also when considering mild solutions of classical stochastic partial differential equations. The key requirement for the equations is a smoothing property of the deterministic evolution operator which is typical in parabolic type problems. We show that if one has access to nonsmooth data estimates for the deterministic error operator together with its derivative of a space discretization procedure, then one obtains error estimates in pathwise H\"older norms with rates that can be read off the deterministic error rates. We illustrate the main result by considering a class of stochastic fractional order partial differential equations and space approximations performed by spectral Galerkin methods and finite elements. We also improve an existing result on the stochastic heat equation.
The global financial crisis of 2007-2009 highlighted the crucial role systemic risk plays in ensuring stability of financial markets. Accurate assessment of systemic risk would enable regulators to introduce suitable policies to mitigate the risk as well as allow individual institutions to monitor their vulnerability to market movements. One popular measure of systemic risk is the conditional value-at-risk (CoVaR), proposed in Adrian and Brunnermeier (2011). We develop a methodology to estimate CoVaR semi-parametrically within the framework of multivariate extreme value theory. According to its definition, CoVaR can be viewed as a high quantile of the conditional distribution of one institution's (or the financial system) potential loss, where the conditioning event corresponds to having large losses in the financial system (or the given financial institution). We relate this conditional distribution to the tail dependence function between the system and the institution, then use parametric modelling of the tail dependence function to address data sparsity in the joint tail regions. We prove consistency of the proposed estimator, and illustrate its performance via simulation studies and a real data example.
We introduce a new metric ($W_\nu$ $\nu$-based Wasserstein metric) on the set of probability measures on $X \subseteq \mathbb{R}^m$, based on a slight refinement of the notion of generalized geodesics with respect to a base measure $\nu$, relevant in particular for the case when $\nu$ is singular with respect to $m$-dimensional Lebesgue measure. $W_\nu$ is defined in terms of an iterated variational problem involving optimal transport to $\nu$; we also characterize it in terms of integrations of classical Wasserstein distance between the conditional probabilities with respect to $\nu$, and through limits of certain multi-marginal optimal transport problems. We also introduce a class of metrics which are dual in a certain sense to $W_\nu$ on the set of measures which are absolutely continuous with respect to a second fixed based measure $\sigma$.As we vary the base measure $\nu$, $W_\nu$ interpolates between the usual quadratic Wasserstein distance and a metric associated with the uniquely defined generalized geodesics obtained when $\nu$ is sufficiently regular. When $\nu$ concentrates on a lower dimensional submanifold of $\mathbb{R}^m$, we prove that the variational problem in the definition of the $\nu$-based Wasserstein distance has a unique solution. We establish geodesic convexity of the usual class of functionals and of the set of source measures $\mu$ such that optimal transport between $\mu$ and $\nu$ satisfies a strengthening of the generalized nestedness condition introduced in \cite{McCannPass20}. We also present two applications of the ideas introduced here. First, our dual metric is used to prove convergence of an iterative scheme to solve a variational problem arising in game theory. We also use the multi-marginal formulation to characterize solutions to the multi-marginal problem by an ordinary differential equation, yielding a new numerical method for it.
Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.