亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Nonhomogeneous partial differential equations (PDEs) are an applicable model in soft sensor modeling for describing spatiotemporal industrial systems with unmeasurable source terms, which cannot be well solved by existing physics-informed neural networks (PINNs). To this end, a coupled PINN (CPINN) with a recurrent prediction (RP) learning strategy (CPINN-RP) is proposed for soft sensor modeling in spatiotemporal industrial processes, such as vibration displacement. First, CPINN containing NetU and NetG is proposed. NetU is used to approximate the solutions to PDEs under study and NetG is used to regularize the training of NetU. The two networks are integrated into a data-physics-hybrid loss function. Then, we theoretically prove that the proposed CPINN has a satisfying approximation capacity to the PDEs solutions. Besides the theoretical aspects, we propose a hierarchical training strategy to optimize and couple the two networks to achieve the parameters of CPINN. Secondly, NetU-RP is achieved by NetU compensated by RP, the recurrently delayed output of CPINN, to further improve the soft sensor performance. Finally, simulations and experiment verify the effectiveness and practical applications of CPINN-RP.

相關內容

Rare and Weak models for multiple hypothesis testing assume that only a small proportion of the tested hypotheses concern non-null effects and the individual effects are only moderately large, so they generally do not stand out individually, for example in a Bonferroni analysis. Such models have been studied in quite a few settings, for example in some cases studies focused on an underlying Gaussian means model for the hypotheses being tested; in some others, Poisson and Binomial. Such seemingly different models have asymptotically the following common structure. Summarizing the evidence of individual tests by the negative logarithm of its P-value, the model is asymptotically equivalent to a situation in which most negative log P-values have a standard exponential distribution but a small fraction of the P-values might have an alternative distribution which is approximately noncentral chisquared on one degree of freedom. This log-chisquared approximation is different from the log-normal approximation of Bahadur which is unsuitable for analyzing Rare and Weak multiple testing models. We characterize the asymptotic performance of global tests combining asymptotic log-chisquared P-values in terms of the chisquared mixture parameters: the scaling parameter controlling heteroscedasticity, the non-centrality parameter describing the effect size whenever it exists, and the parameter controlling the rarity of the non-null effects. In a phase space involving the last two parameters, we derive a region where all tests are asymptotically powerless. Outside of this region, the Berk-Jones and the Higher Criticism tests have maximal power. Inference techniques based on the minimal P-value, false-discovery rate controlling, and Fisher's combination test have sub-optimal asymptotic phase diagrams.

RDMA has been widely adopted for high-speed datacenter networks. However, native RDMA merely supports one-to-one reliable connection, which mismatches various applications with group communication patterns (e.g., one-to-many). While there are some multicast enhancements to address it, they all fail to simultaneously achieve optimal multicast forwarding and fully unleash the distinguished RDMA capabilities. In this paper, we present Gleam, an RDMA-accelerated multicast protocol that simultaneously supports optimal multicast forwarding, efficient utilization of the prominent RDMA capabilities, and compatibility with the commodity RNICs. At its core, Gleam re-purposes the existing RDMA RC logic with careful switch coordination as an efficient multicast transport. Gleam performs the one-to-many connection maintenance and many-to-one feedback aggregation, based on an extended multicast forwarding table structure, to achieve integration between standard RC logic and in-fabric multicast. We implement a fully functional Gleam prototype. With extensive testbed experiments and simulations, we demonstrate Gleam's significant improvement in accelerating multicast communication of realistic applications. For instance, Gleam achieves 2.9X lower communication time of an HPC benchmark application and 2.7X higher data replication throughput.

In this paper, we propose physics-informed neural operators (PINO) that combine training data and physics constraints to learn the solution operator of a given family of parametric Partial Differential Equations (PDE). PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator. Specifically, in PINO, we combine coarse-resolution training data with PDE constraints imposed at a higher resolution. The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families and shows no degradation in accuracy even under zero-shot super-resolution, i.e., being able to predict beyond the resolution of training data. PINO uses the Fourier neural operator (FNO) framework that is guaranteed to be a universal approximator for any continuous operator and discretization-convergent in the limit of mesh refinement. By adding PDE constraints to FNO at a higher resolution, we obtain a high-fidelity reconstruction of the ground-truth operator. Moreover, PINO succeeds in settings where no training data is available and only PDE constraints are imposed, while previous approaches, such as the Physics-Informed Neural Network (PINN), fail due to optimization challenges, e.g., in multi-scale dynamic systems such as Kolmogorov flows.

In recurrent neural networks, learning long-term dependency is the main difficulty due to the vanishing and exploding gradient problem. Many researchers are dedicated to solving this issue and they proposed many algorithms. Although these algorithms have achieved great success, understanding how the information decays remains an open problem. In this paper, we study the dynamics of the hidden state in recurrent neural networks. We propose a new perspective to analyze the hidden state space based on an eigen decomposition of the weight matrix. We start the analysis by linear state space model and explain the function of preserving information in activation functions. We provide an explanation for long-term dependency based on the eigen analysis. We also point out the different behavior of eigenvalues for regression tasks and classification tasks. From the observations on well-trained recurrent neural networks, we proposed a new initialization method for recurrent neural networks, which improves consistently performance. It can be applied to vanilla-RNN, LSTM, and GRU. We test on many datasets, such as Tomita Grammars, pixel-by-pixel MNIST datasets, and machine translation datasets (Multi30k). It outperforms the Xavier initializer and kaiming initializer as well as other RNN-only initializers like IRNN and sp-RNN in several tasks.

Learned cardinality estimation methods have achieved high precision compared to traditional methods. Among learned methods, query-driven approaches face the data and workload drift problem for a long time. Although both query-driven and hybrid methods are proposed to avoid this problem, even the state-of-the-art of them suffer from high training and estimation costs, limited scalability, instability, and long-tailed distribution problem on high cardinality and high-dimensional tables, which seriously affects the practical application of learned cardinality estimators. In this paper, we prove that most of these problems are directly caused by the widely used progressive sampling. We solve this problem by introducing predicates information into the autoregressive model and propose Duet, a stable, efficient, and scalable hybrid method to estimate cardinality directly without sampling or any non-differentiable process, which can not only reduces the inference complexity from O(n) to O(1) compared to Naru and UAE but also achieve higher accuracy on high cardinality and high-dimensional tables. Experimental results show that Duet can achieve all the design goals above and be much more practical and even has a lower inference cost on CPU than that of most learned methods on GPU.

Data profiling is an essential process in modern data-driven industries. One of its critical components is the discovery and validation of complex statistics, including functional dependencies, data constraints, association rules, and others. However, most existing data profiling systems that focus on complex statistics do not provide proper integration with the tools used by contemporary data scientists. This creates a significant barrier to the adoption of these tools in the industry. Moreover, existing systems were not created with industrial-grade workloads in mind. Finally, they do not aim to provide descriptive explanations, i.e. why a given pattern is not found. It is a significant issue as it is essential to understand the underlying reasons for a specific pattern's absence to make informed decisions based on the data. Because of that, these patterns are effectively rest in thin air: their application scope is rather limited, they are rarely used by the broader public. At the same time, as we are going to demonstrate in this presentation, complex statistics can be efficiently used to solve many classic data quality problems. Desbordante is an open-source data profiler that aims to close this gap. It is built with emphasis on industrial application: it is efficient, scalable, resilient to crashes, and provides explanations. Furthermore, it provides seamless Python integration by offloading various costly operations to the C++ core, not only mining. In this demonstration, we show several scenarios that allow end users to solve different data quality problems. Namely, we showcase typo detection, data deduplication, and data anomaly detection scenarios.

The regression of a functional response on a set of scalar predictors can be a challenging task, especially if there is a large number of predictors, or the relationship between those predictors and the response is nonlinear. In this work, we propose a solution to this problem: a feed-forward neural network (NN) designed to predict a functional response using scalar inputs. First, we transform the functional response to a finite-dimensional representation and construct an NN that outputs this representation. Then, we propose to modify the output of an NN via the objective function and introduce different objective functions for network training. The proposed models are suited for both regularly and irregularly spaced data, and a roughness penalty can be further applied to control the smoothness of the predicted curve. The difficulty in implementing both those features lies in the definition of objective functions that can be back-propagated. In our experiments, we demonstrate that our model outperforms the conventional function-on-scalar regression model in multiple scenarios while computationally scaling better with the dimension of the predictors.

The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.

Graph Convolutional Network (GCN) has been widely applied in transportation demand prediction due to its excellent ability to capture non-Euclidean spatial dependence among station-level or regional transportation demands. However, in most of the existing research, the graph convolution was implemented on a heuristically generated adjacency matrix, which could neither reflect the real spatial relationships of stations accurately, nor capture the multi-level spatial dependence of demands adaptively. To cope with the above problems, this paper provides a novel graph convolutional network for transportation demand prediction. Firstly, a novel graph convolution architecture is proposed, which has different adjacency matrices in different layers and all the adjacency matrices are self-learned during the training process. Secondly, a layer-wise coupling mechanism is provided, which associates the upper-level adjacency matrix with the lower-level one. It also reduces the scale of parameters in our model. Lastly, a unitary network is constructed to give the final prediction result by integrating the hidden spatial states with gated recurrent unit, which could capture the multi-level spatial dependence and temporal dynamics simultaneously. Experiments have been conducted on two real-world datasets, NYC Citi Bike and NYC Taxi, and the results demonstrate the superiority of our model over the state-of-the-art ones.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司