亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper is concerned with the development of suitable numerical method for the approximation of discontinuous solutions of parameter-dependent linear hyperbolic conservation laws. The objective is to reconstruct such approximation, for new instances of the parameter values for any time, from a transformation of pre-computed snapshots of the solution trajectories for new parameter values. In a finite volume setting, a Reconstruct-Transform-Average (RTA) algorithm inspired from the Reconstruct-Evolve-Average one of Godunov's method is proposed. It allows to perform, in three steps, a transformation of the snapshots with piecewise constant reconstruction. The method is fully detailed and analyzed for solving a parameter-dependent transport equation for which the spatial transformation is related to the characteristic intrinsic to the problem. Numerical results for transport equation and linear elastodynamics equations illustrate the good behavior of the proposed approach.

相關內容

We study the learning properties of nonparametric ridge-less least squares. In particular, we consider the common case of estimators defined by scale dependent kernels, and focus on the role of the scale. These estimators interpolate the data and the scale can be shown to control their stability through the condition number. Our analysis shows that are different regimes depending on the interplay between the sample size, its dimensions, and the smoothness of the problem. Indeed, when the sample size is less than exponential in the data dimension, then the scale can be chosen so that the learning error decreases. As the sample size becomes larger, the overall error stop decreasing but interestingly the scale can be chosen in such a way that the variance due to noise remains bounded. Our analysis combines, probabilistic results with a number of analytic techniques from interpolation theory.

In this paper we develop a neural network for the numerical simulation of time-dependent linear transport equations with diffusive scaling and uncertainties. The goal of the network is to resolve the computational challenges of curse-of-dimensionality and multiple scales of the problem. We first show that a standard Physics-Informed Neural Network (PINNs) fails to capture the multiscale nature of the problem, hence justifies the need to use Asymptotic-Preserving Neural Networks (APNNs). We show that not all classical AP formulations are fit for the neural network approach. We construct a micro-macro decomposition based neutral network, and also build in a mass conservation mechanism into the loss function, in order to capture the dynamic and multiscale nature of the solutions. Numerical examples are used to demonstrate the effectiveness of this APNNs.

In this short paper we present the first application of the IMAS compatible code NICE to equilibrium reconstrution for ITER geometry. The inverse problem is formulated as a least square problem and the numerical methods implemented in NICE in order to solve it are presented. The results of a numerical experiment are shown: a reference equilibrium is computed from which a set of synthetic magnetic measurements are extracted. Then these measurements are used successfully to reconstruct the equilibrium of the plasma.

The parameterization of open and closed anatomical surfaces is of fundamental importance in many biomedical applications. Spherical harmonics, a set of basis functions defined on the unit sphere, are widely used for anatomical shape description. However, establishing a one-to-one correspondence between the object surface and the entire unit sphere may induce a large geometric distortion in case the shape of the surface is too different from a perfect sphere. In this work, we propose adaptive area-preserving parameterization methods for simply-connected open and closed surfaces with the target of the parameterization being a spherical cap. Our methods optimize the shape of the parameter domain along with the mapping from the object surface to the parameter domain. The object surface will be globally mapped to an optimal spherical cap region of the unit sphere in an area-preserving manner while also exhibiting low conformal distortion. We further develop a set of spherical harmonics-like basis functions defined over the adaptive spherical cap domain, which we call the adaptive harmonics. Experimental results show that the proposed parameterization methods outperform the existing methods for both open and closed anatomical surfaces in terms of area and angle distortion. Surface description of the object surfaces can be effectively achieved using a novel combination of the adaptive parameterization and the adaptive harmonics. Our work provides a novel way of mapping anatomical surfaces with improved accuracy and greater flexibility. More broadly, the idea of using an adaptive parameter domain allows easy handling of a wide range of biomedical shapes.

Transmit a codeword $x$, that belongs to an $(\ell-1)$-deletion-correcting code of length $n$, over a $t$-deletion channel for some $1\le \ell\le t<n$. Levenshtein, in 2001, proposed the problem of determining $N(n,\ell,t)+1$, the minimum number of distinct channel outputs required to uniquely reconstruct $x$. Prior to this work, $N(n,\ell,t)$ is known only when $\ell\in\{1,2\}$. Here, we provide an asymptotically exact solution for all values of $\ell$ and $t$. Specifically, we show that $N(n,\ell,t)=\binom{2\ell}{\ell}/(t-\ell)! n^{t-\ell} - O(n^{t-\ell-1})$ and in the special instance where $\ell=t$, we show that $N(n,\ell,\ell)=\binom{2\ell}{\ell}$. We also provide a conjecture on the exact value of $N(n,\ell,t)$ for all values of $n$, $\ell$, and $t$.

In this paper, we derive the mixed and componentwise condition numbers for a linear function of the solution to the total least squares with linear equality constraint (TLSE) problem. The explicit expressions of the mixed and componentwise condition numbers by dual techniques under both unstructured and structured componentwise perturbations is considered. With the intermediate result, i.e. we can recover the both unstructured and structured condition number for the TLS problem. We choose the small-sample statistical condition estimation method to estimate both unstructured and structured condition numbers with high reliability. Numerical experiments are provided to illustrate the obtained results.

We investigate the local spectral statistics of the loss surface Hessians of artificial neural networks, where we discover excellent agreement with Gaussian Orthogonal Ensemble statistics across several network architectures and datasets. These results shed new light on the applicability of Random Matrix Theory to modelling neural networks and suggest a previously unrecognised role for it in the study of loss surfaces in deep learning. Inspired by these observations, we propose a novel model for the true loss surfaces of neural networks, consistent with our observations, which allows for Hessian spectral densities with rank degeneracy and outliers, extensively observed in practice, and predicts a growing independence of loss gradients as a function of distance in weight-space. We further investigate the importance of the true loss surface in neural networks and find, in contrast to previous work, that the exponential hardness of locating the global minimum has practical consequences for achieving state of the art performance.

We are interested in the optimization of convex domains under a PDE constraint. Due to the difficulties of approximating convex domains in $\mathbb{R}^3$, the restriction to rotationally symmetric domains is used to reduce shape optimization problems to a two-dimensional setting. For the optimization of an eigenvalue arising in a problem of optimal insulation, the existence of an optimal domain is proven. An algorithm is proposed that can be applied to general shape optimization problems under the geometric constraints of convexity and rotational symmetry. The approximated optimal domains for the eigenvalue problem in optimal insulation are discussed.

Let $L_{a,b}$ be a line in the Euclidean plane with slope $a$ and intercept $b$. The dimension spectrum $\spec(L_{a,b})$ is the set of all effective dimensions of individual points on $L_{a,b}$. The dimension spectrum conjecture states that, for every line $L_{a,b}$, the spectrum of $L_{a,b}$ contains a unit interval. In this paper we prove that the dimension spectrum conjecture is true. Let $(a,b)$ be a slope-intercept pair, and let $d = \min\{\dim(a,b), 1\}$. For every $s \in (0, 1)$, we construct a point $x$ such that $\dim(x, ax + b) = d + s$. Thus, we show that $\spec(L_{a,b})$ contains the interval $(d, 1+ d)$. Results of Turetsky , and Lutz and Stull, show that $\spec(L_{a,b})$ contain the endpoints $d$ and $1+d$. Taken together, $[d, 1 + d] \subseteq \spec(L_{a,b})$, for every planar line $L_{a,b}$.

Importance sampling is one of the most widely used variance reduction strategies in Monte Carlo rendering. In this paper, we propose a novel importance sampling technique that uses a neural network to learn how to sample from a desired density represented by a set of samples. Our approach considers an existing Monte Carlo rendering algorithm as a black box. During a scene-dependent training phase, we learn to generate samples with a desired density in the primary sample space of the rendering algorithm using maximum likelihood estimation. We leverage a recent neural network architecture that was designed to represent real-valued non-volume preserving ('Real NVP') transformations in high dimensional spaces. We use Real NVP to non-linearly warp primary sample space and obtain desired densities. In addition, Real NVP efficiently computes the determinant of the Jacobian of the warp, which is required to implement the change of integration variables implied by the warp. A main advantage of our approach is that it is agnostic of underlying light transport effects, and can be combined with many existing rendering techniques by treating them as a black box. We show that our approach leads to effective variance reduction in several practical scenarios.

北京阿比特科技有限公司