亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In software development, the raw requirements proposed by users are frequently incomplete, which impedes the complete implementation of application functionalities. With the emergence of large language models, recent methods with the top-down waterfall model employ a questioning approach for requirement completion, attempting to explore further user requirements. However, users, constrained by their domain knowledge, lack effective acceptance criteria, which fail to capture the implicit needs of the user. Moreover, the cumulative errors of the waterfall model can lead to discrepancies between the generated code and user requirements. The Agile methodologies reduce cumulative errors through lightweight iteration and collaboration with users, but the challenge lies in ensuring semantic consistency between user requirements and the code generated. We propose AgileGen, an agile-based generative software development through human-AI teamwork. AgileGen attempts for the first time to use testable requirements by Gherkin for semantic consistency between requirements and code. Additionally, we innovate in human-AI teamwork, allowing users to participate in decision-making processes they do well and enhancing the completeness of application functionality. Finally, to improve the reliability of user scenarios, a memory pool mechanism is used to collect user decision-making scenarios and recommend them to new users. AgileGen, as a user-friendly interactive system, significantly outperformed existing best methods by 16.4% and garnered higher user satisfaction.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 語言模型化 · Performer · 代碼 · JavaScript ·
2024 年 12 月 20 日

Vulnerability detection is crucial for maintaining software security, and recent research has explored the use of Language Models (LMs) for this task. While LMs have shown promising results, their performance has been inconsistent across datasets, particularly when generalizing to unseen code. Moreover, most studies have focused on the C/C++ programming language, with limited attention given to other popular languages. This paper addresses this gap by investigating the effectiveness of LMs for vulnerability detection in JavaScript, Java, Python, PHP, and Go, in addition to C/C++ for comparison. We utilize the CVEFixes dataset to create a diverse collection of language-specific vulnerabilities and preprocess the data to ensure quality and integrity. We fine-tune and evaluate state-of-the-art LMs across the selected languages and find that the performance of vulnerability detection varies significantly. JavaScript exhibits the best performance, with considerably better and more practical detection capabilities compared to C/C++. We also examine the relationship between code complexity and detection performance across the six languages and find only a weak correlation between code complexity metrics and the models' F1 scores.

In software applications, user models can be used to specify the profile of the typical users of the application, including personality traits, preferences, skills, etc. In theory, this would enable an adaptive application behavior that could lead to a better user experience. Nevertheless, user models do not seem to be part of standard modeling languages nor common in current model-driven engineering (MDE) approaches. In this paper, we conduct a systematic literature review to analyze existing proposals for user modeling in MDE and identify their limitations. The results showcase that there is a lack of a unified and complete user modeling perspective. Instead, we observe a lot of fragmented and partial proposals considering only simple user dimensions and with lack of proper tool support. This limits the implementation of richer user interfaces able to better support the user-specific needs. Therefore, we hope this analysis triggers a discussion on the importance of user models and their inclusion in MDE pipelines. Especially in a context where, thanks to the rise of AI techniques, personalization, based on a rich number of user dimensions, is becoming more and more of a possibility.

To address the challenges of imbalanced multi-class datasets typically used for rare event detection in critical cyber-physical systems, we propose an optimal, efficient, and adaptable mixed integer programming (MIP) ensemble weighting scheme. Our approach leverages the diverse capabilities of the classifier ensemble on a granular per class basis, while optimizing the weights of classifier-class pairs using elastic net regularization for improved robustness and generalization. Additionally, it seamlessly and optimally selects a predefined number of classifiers from a given set. We evaluate and compare our MIP-based method against six well-established weighting schemes, using representative datasets and suitable metrics, under various ensemble sizes. The experimental results reveal that MIP outperforms all existing approaches, achieving an improvement in balanced accuracy ranging from 0.99% to 7.31%, with an overall average of 4.53% across all datasets and ensemble sizes. Furthermore, it attains an overall average increase of 4.63%, 4.60%, and 4.61% in macro-averaged precision, recall, and F1-score, respectively, while maintaining computational efficiency.

Code review is a crucial process before deploying code to production, as it validates the code, provides suggestions for improvements, and identifies errors such as missed edge cases. In projects with regular production releases, the effort required for peer code-reviews remains high. Consequently, there has been significant interest from software engineering (SE) researchers in automating the code review process. Previous research on code review automation has typically approached the task as three independent sub-tasks: review necessity prediction, review comment generation, and code refinement. Our study attempts to (i) leverage the relationships between the sub-tasks of code review automation, by developing a multi-task model that addresses all tasks in an integrated manner, and (ii) increase model robustness on unseen data via collaborative large language model (LLM) modeling, while retaining the proprietary nature of code, by using federated learning (FL). The study explores five simple techniques for multi-task training, including two sequential methods, one parallel method, and two cumulative methods. The results indicate that sequentially training a federated LLM (FedLLM) for our code review multi-task use case is less efficient in terms of time, computation, and performance metrics, compared to training separate models for each task. Because sequential training demonstrates catastrophic forgetting, alternatively cumulative fine-tuning for multi-task training performs better than training models for individual tasks. This study highlights the need for research focused on effective fine-tuning of multi-task FedLLMs for SE tasks.

A recently proposed scheme utilizing local noise addition and matrix masking enables data collection while protecting individual privacy from all parties, including the central data manager. Statistical analysis of such privacy-preserved data is particularly challenging for nonlinear models like logistic regression. By leveraging a relationship between logistic regression and linear regression estimators, we propose the first valid statistical analysis method for logistic regression under this setting. Theoretical analysis of the proposed estimators confirmed its validity under an asymptotic framework with increasing noise magnitude to account for strict privacy requirements. Simulations and real data analyses demonstrate the superiority of the proposed estimators over naive logistic regression methods on privacy-preserved data sets.

To understand a document with multiple events, event-event relation extraction (ERE) emerges as a crucial task, aiming to discern how natural events temporally or structurally associate with each other. To achieve this goal, our work addresses the problems of temporal event relation extraction (TRE) and subevent relation extraction (SRE). The latest methods for such problems have commonly built document-level event graphs for global reasoning across sentences. However, the edges between events are usually derived from external tools heuristically, which are not always reliable and may introduce noise. Moreover, they are not capable of preserving logical constraints among event relations, e.g., coreference constraint, symmetry constraint and conjunction constraint. These constraints guarantee coherence between different relation types,enabling the generation of a uniffed event evolution graph. In this work, we propose a novel method named LogicERE, which performs high-order event relation reasoning through modeling logic constraints. Speciffcally, different from conventional event graphs, we design a logic constraint induced graph (LCG) without any external tools. LCG involves event nodes where the interactions among them can model the coreference constraint, and event pairs nodes where the interactions among them can retain the symmetry constraint and conjunction constraint. Then we perform high-order reasoning on LCG with relational graph transformer to obtain enhanced event and event pair embeddings. Finally, we further incorporate logic constraint information via a joint logic learning module. Extensive experiments demonstrate the effectiveness of the proposed method with state-of-the-art performance on benchmark datasets.

This study presents a novel approach for intelligent user interaction interface generation and optimization, grounded in the variational autoencoder (VAE) model. With the rapid advancement of intelligent technologies, traditional interface design methods struggle to meet the evolving demands for diversity and personalization, often lacking flexibility in real-time adjustments to enhance the user experience. Human-Computer Interaction (HCI) plays a critical role in addressing these challenges by focusing on creating interfaces that are functional, intuitive, and responsive to user needs. This research leverages the RICO dataset to train the VAE model, enabling the simulation and creation of user interfaces that align with user aesthetics and interaction habits. By integrating real-time user behavior data, the system dynamically refines and optimizes the interface, improving usability and underscoring the importance of HCI in achieving a seamless user experience. Experimental findings indicate that the VAE-based approach significantly enhances the quality and precision of interface generation compared to other methods, including autoencoders (AE), generative adversarial networks (GAN), conditional GANs (cGAN), deep belief networks (DBN), and VAE-GAN. This work contributes valuable insights into HCI, providing robust technical solutions for automated interface generation and enhanced user experience optimization.

The increasing use of Machine Learning (ML) software can lead to unfair and unethical decisions, thus fairness bugs in software are becoming a growing concern. Addressing these fairness bugs often involves sacrificing ML performance, such as accuracy. To address this issue, we present a novel counterfactual approach that uses counterfactual thinking to tackle the root causes of bias in ML software. In addition, our approach combines models optimized for both performance and fairness, resulting in an optimal solution in both aspects. We conducted a thorough evaluation of our approach on 10 benchmark tasks using a combination of 5 performance metrics, 3 fairness metrics, and 15 measurement scenarios, all applied to 8 real-world datasets. The conducted extensive evaluations show that the proposed method significantly improves the fairness of ML software while maintaining competitive performance, outperforming state-of-the-art solutions in 84.6% of overall cases based on a recent benchmarking tool.

In analog neuromorphic chips, designers can embed computing primitives in the intrinsic physical properties of devices and circuits, heavily reducing device count and energy consumption, and enabling high parallelism, because all devices are computing simultaneously. Neural network parameters can be stored in local analog non-volatile memories (NVMs), saving the energy required to move data between memory and logic. However, the main drawback of analog sub-threshold electronic circuits is their dramatic temperature sensitivity. In this paper, we demonstrate that a temperature compensation mechanism can be devised to solve this problem. We have designed and fabricated a chip implementing a two-layer analog neural network trained to classify low-resolution images of handwritten digits with a low-cost single-poly complementary metal-oxide-semiconductor (CMOS) process, using unconventional analog NVMs for weight storage. We demonstrate a temperature-resilient analog neuromorphic chip for image recognition operating between 10$^{\circ}$C and 60$^{\circ}$C without loss of classification accuracy, within 2\% of the corresponding software-based neural network in the whole temperature range.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

北京阿比特科技有限公司