In recent years, studies such as \cite{carmon2019unlabeled,gowal2021improving,xing2022artificial} have demonstrated that incorporating additional real or generated data with pseudo-labels can enhance adversarial training through a two-stage training approach. In this paper, we perform a theoretical analysis of the asymptotic behavior of this method in high-dimensional linear regression. While a double-descent phenomenon can be observed in ridgeless training, with an appropriate $\mathcal{L}_2$ regularization, the two-stage adversarial training achieves a better performance. Finally, we derive a shortcut cross-validation formula specifically tailored for the two-stage training method.
Data uncertainties, such as sensor noise or occlusions, can introduce irreducible ambiguities in images, which result in varying, yet plausible, semantic hypotheses. In Machine Learning, this ambiguity is commonly referred to as aleatoric uncertainty. Latent density models can be utilized to address this problem in image segmentation. The most popular approach is the Probabilistic U-Net (PU-Net), which uses latent Normal densities to optimize the conditional data log-likelihood Evidence Lower Bound. In this work, we demonstrate that the PU- Net latent space is severely inhomogenous. As a result, the effectiveness of gradient descent is inhibited and the model becomes extremely sensitive to the localization of the latent space samples, resulting in defective predictions. To address this, we present the Sinkhorn PU-Net (SPU-Net), which uses the Sinkhorn Divergence to promote homogeneity across all latent dimensions, effectively improving gradient-descent updates and model robustness. Our results show that by applying this on public datasets of various clinical segmentation problems, the SPU-Net receives up to 11% performance gains compared against preceding latent variable models for probabilistic segmentation on the Hungarian-Matched metric. The results indicate that by encouraging a homogeneous latent space, one can significantly improve latent density modeling for medical image segmentation.
Standard bandit algorithms that assume continual reallocation of measurement effort are challenging to implement due to delayed feedback and infrastructural/organizational difficulties. Motivated by practical instances involving a handful of reallocation epochs in which outcomes are measured in batches, we develop a computation-driven adaptive experimentation framework that can flexibly handle batching. Our main observation is that normal approximations, which are universal in statistical inference, can also guide the design of adaptive algorithms. By deriving a Gaussian sequential experiment, we formulate a dynamic program that can leverage prior information on average rewards. Instead of the typical theory-driven paradigm, we leverage computational tools and empirical benchmarking for algorithm development. In particular, our empirical analysis highlights a simple yet effective algorithm, Residual Horizon Optimization, which iteratively solves a planning problem using stochastic gradient descent. Our approach significantly improves statistical power over standard methods, even when compared to Bayesian bandit algorithms (e.g., Thompson sampling) that require full distributional knowledge of individual rewards. Overall, we expand the scope of adaptive experimentation to settings that are difficult for standard methods, involving limited adaptivity, low signal-to-noise ratio, and unknown reward distributions.
In recent years, there has been remarkable progress in the development of so-called certifiable perception methods, which leverage semidefinite, convex relaxations to find global optima of perception problems in robotics. However, many of these relaxations rely on simplifying assumptions that facilitate the problem formulation, such as an isotropic measurement noise distribution. In this paper, we explore the tightness of the semidefinite relaxations of matrix-weighted (anisotropic) state-estimation problems and reveal the limitations lurking therein: matrix-weighted factors can cause convex relaxations to lose tightness. In particular, we show that the semidefinite relaxations of localization problems with matrix weights may be tight only for low noise levels. We empirically explore the factors that contribute to this loss of tightness and demonstrate that redundant constraints can be used to regain tightness, albeit at the expense of real-time performance. As a second technical contribution of this paper, we show that the state-of-the-art relaxation of scalar-weighted SLAM cannot be used when matrix weights are considered. We provide an alternate formulation and show that its SDP relaxation is not tight (even for very low noise levels) unless specific redundant constraints are used. We demonstrate the tightness of our formulations on both simulated and real-world data.
Modern cyber-physical systems (CPS) such as Cooperative Intelligent Transport Systems (C-ITS) are increasingly defined by the software which operates these systems. In practice, microservice architectures can be employed, which may consist of containerized microservices running in a cluster comprised of robots and supporting infrastructure. These microservices need to be orchestrated dynamically according to ever changing requirements posed at the system. Additionally, these systems are embedded in DevOps processes aiming at continually updating and upgrading both the capabilities of CPS components and of the system as a whole. In this paper, we present RobotKube, an approach to orchestrating containerized microservices for large-scale cooperative multi-robot CPS based on Kubernetes. We describe how to automate the orchestration of software across a CPS, and include the possibility to monitor and selectively store relevant accruing data. In this context, we present two main components of such a system: an event detector capable of, e.g., requesting the deployment of additional applications, and an application manager capable of automatically configuring the required changes in the Kubernetes cluster. By combining the widely adopted Kubernetes platform with the Robot Operating System (ROS), we enable the use of standard tools and practices for developing, deploying, scaling, and monitoring microservices in C-ITS. We demonstrate and evaluate RobotKube in an exemplary and reproducible use case that we make publicly available at //github.com/ika-rwth-aachen/robotkube .
Rank-order coding, a form of temporal coding, has emerged as a promising scheme to explain the rapid ability of the mammalian brain. Owing to its speed as well as efficiency, rank-order coding is increasingly gaining interest in diverse research areas beyond neuroscience. However, much uncertainty still exists about the performance of rank-order coding under noise. Herein we show what information rates are fundamentally possible and what trade-offs are at stake. An unexpected finding in this paper is the emergence of a special class of errors that, in a regime, increase with less noise.
Past works have shown that the Bernstein-von Mises theorem, on the asymptotic normality of posterior distributions, holds if the parameter dimension $d$ grows slower than the cube root of sample size $n$. Here, we prove the first Bernstein-von Mises theorem in the regime $d^2\ll n$. We establish this result for 1) exponential families and 2) logistic regression with Gaussian design. The proof builds on our recent work on the accuracy of the Laplace approximation to posterior distributions, in which we showed the approximation error in TV distance scales as $d/\sqrt n$.
Recently, big artificial intelligence (AI) models represented by chatGPT have brought an incredible revolution. With the pre-trained big AI model (BAIM) in certain fields, numerous downstream tasks can be accomplished with only few-shot or even zero-shot learning and exhibit state-of-the-art performances. As widely envisioned, the big AI models are to rapidly penetrate into major intelligent services and applications, and are able to run at low unit cost and high flexibility. In 6G wireless networks, to fully enable intelligent communication, sensing and computing, apart from providing other intelligent wireless services and applications, it is of vital importance to design and deploy certain wireless BAIMs (wBAIMs). However, there still lacks investigation on architecture design and system evaluation for wBAIM. In this paper, we provide a comprehensive discussion as well as some in-depth prospects on the demand, design and deployment aspects of the wBAIM. We opine that wBAIM will be a recipe of the 6G wireless networks to build high-efficient, sustainable, versatile, and extensible wireless intelligence for numerous promising visions. Then, we present the core characteristics and principles to guide the design of wBAIMs, and discuss the key aspects of developing wBAIMs through identifying the differences between the existing BAIMs and the emerging wBAIMs. Finally, related research directions and potential solutions are outlined.
Large Language Models (LLMs) have emerged as a transformative force, revolutionizing numerous fields well beyond the conventional domain of Natural Language Processing (NLP) and garnering unprecedented attention. As LLM technology continues to progress, the telecom industry is facing the prospect of its potential impact on its landscape. To elucidate these implications, we delve into the inner workings of LLMs, providing insights into their current capabilities and limitations. We also examine the use cases that can be readily implemented in the telecom industry, streamlining numerous tasks that currently hinder operational efficiency and demand significant manpower and engineering expertise. Furthermore, we uncover essential research directions that deal with the distinctive challenges of utilizing the LLMs within the telecom domain. Addressing these challenges represents a significant stride towards fully harnessing the potential of LLMs and unlocking their capabilities to the fullest extent within the telecom domain.
In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.