亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

How to automatically transfer the dynamic texture of a given video to the target still image is a challenging and ongoing problem. In this paper, we propose to handle this task via a simple yet effective model that utilizes both PatchMatch and Transformers. The key idea is to decompose the task of dynamic texture transfer into two stages, where the start frame of the target video with the desired dynamic texture is synthesized in the first stage via a distance map guided texture transfer module based on the PatchMatch algorithm. Then, in the second stage, the synthesized image is decomposed into structure-agnostic patches, according to which their corresponding subsequent patches can be predicted by exploiting the powerful capability of Transformers equipped with VQ-VAE for processing long discrete sequences. After getting all those patches, we apply a Gaussian weighted average merging strategy to smoothly assemble them into each frame of the target stylized video. Experimental results demonstrate the effectiveness and superiority of the proposed method in dynamic texture transfer compared to the state of the art.

相關內容

Programming a robotic is a complex task, as it demands the user to have a good command of specific programming languages and awareness of the robot's physical constraints. We propose a framework that simplifies robot deployment by allowing direct communication using natural language. It uses large language models (LLM) for prompt processing, workspace understanding, and waypoint generation. It also employs Augmented Reality (AR) to provide visual feedback of the planned outcome. We showcase the effectiveness of our framework with a simple pick-and-place task, which we implement on a real robot. Moreover, we present an early concept of expressive robot behavior and skill generation that can be used to communicate with the user and learn new skills (e.g., object grasping).

Story Visualization (SV) is a challenging generative vision task, that requires both visual quality and consistency between different frames in generated image sequences. Previous approaches either employ some kind of memory mechanism to maintain context throughout an auto-regressive generation of the image sequence, or model the generation of the characters and their background separately, to improve the rendering of characters. On the contrary, we embrace a completely parallel transformer-based approach, exclusively relying on Cross-Attention with past and future captions to achieve consistency. Additionally, we propose a Character Guidance technique to focus on the generation of characters in an implicit manner, by forming a combination of text-conditional and character-conditional logits in the logit space. We also employ a caption-augmentation technique, carried out by a Large Language Model (LLM), to enhance the robustness of our approach. The combination of these methods culminates into state-of-the-art (SOTA) results over various metrics in the most prominent SV benchmark (Pororo-SV), attained with constraint resources while achieving superior computational complexity compared to previous arts. The validity of our quantitative results is supported by a human survey.

While human speakers use a variety of different expressions when describing the same object in an image, giving rise to a distribution of plausible labels driven by pragmatic constraints, the extent to which current Vision \& Language Large Language Models (VLLMs) can mimic this crucial feature of language use is an open question. This applies to common, everyday objects, but it is particularly interesting for uncommon or novel objects for which a category label may be lacking or fuzzy. Furthermore, humans show clear production preferences for highly context-sensitive expressions, such as the quantifiers `few' or `most'. In our work, we evaluate VLLMs (FROMAGe, BLIP-2, LLaVA) on three categories (nouns, attributes, and quantifiers) where humans show great subjective variability concerning the distribution over plausible labels, using datasets and resources mostly under-explored in previous work. Our results reveal mixed evidence on the ability of VLLMs to capture human naming preferences, with all models failing in tasks that require high-level reasoning such as assigning quantifiers.

Deepfake detection automatically recognizes the manipulated medias through the analysis of the difference between manipulated and non-altered videos. It is natural to ask which are the top performers among the existing deepfake detection approaches to identify promising research directions and provide practical guidance. Unfortunately, it's difficult to conduct a sound benchmarking comparison of existing detection approaches using the results in the literature because evaluation conditions are inconsistent across studies. Our objective is to establish a comprehensive and consistent benchmark, to develop a repeatable evaluation procedure, and to measure the performance of a range of detection approaches so that the results can be compared soundly. A challenging dataset consisting of the manipulated samples generated by more than 13 different methods has been collected, and 11 popular detection approaches (9 algorithms) from the existing literature have been implemented and evaluated with 6 fair-minded and practical evaluation metrics. Finally, 92 models have been trained and 644 experiments have been performed for the evaluation. The results along with the shared data and evaluation methodology constitute a benchmark for comparing deepfake detection approaches and measuring progress.

In this paper, a unified transformation method in learned image compression(LIC) is proposed from the perspective of modulation. Firstly, the quantization in LIC is considered as a generalized channel with additive uniform noise. Moreover, the LIC is interpreted as a particular communication system according to the consistency in structures and optimization objectives. Thus, the technology of communication systems can be applied to guide the design of modules in LIC. Furthermore, a unified transform method based on signal modulation (TSM) is defined. In the view of TSM, the existing transformation methods are mathematically reduced to a linear modulation. A series of transformation methods, e.g. TPM and TJM, are obtained by extending to nonlinear modulation. The experimental results on various datasets and backbone architectures verify that the effectiveness and robustness of the proposed method. More importantly, it further confirms the feasibility of guiding LIC design from a communication perspective. For example, when backbone architecture is hyperprior combining context model, our method achieves 3.52$\%$ BD-rate reduction over GDN on Kodak dataset without increasing complexity.

In the rapidly advancing realm of visual generation, diffusion models have revolutionized the landscape, marking a significant shift in capabilities with their impressive text-guided generative functions. However, relying solely on text for conditioning these models does not fully cater to the varied and complex requirements of different applications and scenarios. Acknowledging this shortfall, a variety of studies aim to control pre-trained text-to-image (T2I) models to support novel conditions. In this survey, we undertake a thorough review of the literature on controllable generation with T2I diffusion models, covering both the theoretical foundations and practical advancements in this domain. Our review begins with a brief introduction to the basics of denoising diffusion probabilistic models (DDPMs) and widely used T2I diffusion models. We then reveal the controlling mechanisms of diffusion models, theoretically analyzing how novel conditions are introduced into the denoising process for conditional generation. Additionally, we offer a detailed overview of research in this area, organizing it into distinct categories from the condition perspective: generation with specific conditions, generation with multiple conditions, and universal controllable generation. For an exhaustive list of the controllable generation literature surveyed, please refer to our curated repository at \url{//github.com/PRIV-Creation/Awesome-Controllable-T2I-Diffusion-Models}.

As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司