We present and analyze an algorithm designed for addressing vector-valued regression problems involving possibly infinite-dimensional input and output spaces. The algorithm is a randomized adaptation of reduced rank regression, a technique to optimally learn a low-rank vector-valued function (i.e. an operator) between sampled data via regularized empirical risk minimization with rank constraints. We propose Gaussian sketching techniques both for the primal and dual optimization objectives, yielding Randomized Reduced Rank Regression (R4) estimators that are efficient and accurate. For each of our R4 algorithms we prove that the resulting regularized empirical risk is, in expectation w.r.t. randomness of a sketch, arbitrarily close to the optimal value when hyper-parameteres are properly tuned. Numerical expreriments illustrate the tightness of our bounds and show advantages in two distinct scenarios: (i) solving a vector-valued regression problem using synthetic and large-scale neuroscience datasets, and (ii) regressing the Koopman operator of a nonlinear stochastic dynamical system.
Deep neural networks used for reconstructing sparse-view CT data are typically trained by minimizing a pixel-wise mean-squared error or similar loss function over a set of training images. However, networks trained with such pixel-wise losses are prone to wipe out small, low-contrast features that are critical for screening and diagnosis. To remedy this issue, we introduce a novel training loss inspired by the model observer framework to enhance the detectability of weak signals in the reconstructions. We evaluate our approach on the reconstruction of synthetic sparse-view breast CT data, and demonstrate an improvement in signal detectability with the proposed loss.
Under a generalised estimating equation analysis approach, approximate design theory is used to determine Bayesian D-optimal designs. For two examples, considering simple exchangeable and exponential decay correlation structures, we compare the efficiency of identified optimal designs to balanced stepped-wedge designs and corresponding stepped-wedge designs determined by optimising using a normal approximation approach. The dependence of the Bayesian D-optimal designs on the assumed correlation structure is explored; for the considered settings, smaller decay in the correlation between outcomes across time periods, along with larger values of the intra-cluster correlation, leads to designs closer to a balanced design being optimal. Unlike for normal data, it is shown that the optimal design need not be centro-symmetric in the binary outcome case. The efficiency of the Bayesian D-optimal design relative to a balanced design can be large, but situations are demonstrated in which the advantages are small. Similarly, the optimal design from a normal approximation approach is often not much less efficient than the Bayesian D-optimal design. Bayesian D-optimal designs can be readily identified for stepped-wedge cluster randomised trials with binary outcome data. In certain circumstances, principally ones with strong time period effects, they will indicate that a design unlikely to have been identified by previous methods may be substantially more efficient. However, they require a larger number of assumptions than existing optimal designs, and in many situations existing theory under a normal approximation will provide an easier means of identifying an efficient design for binary outcome data.
The broad class of multivariate unified skew-normal (SUN) distributions has been recently shown to possess fundamental conjugacy properties. When used as priors for the vector of parameters in general probit, tobit, and multinomial probit models, these distributions yield posteriors that still belong to the SUN family. Although such a core result has led to important advancements in Bayesian inference and computation, its applicability beyond likelihoods associated with fully-observed, discretized, or censored realizations from multivariate Gaussian models remains yet unexplored. This article covers such an important gap by proving that the wider family of multivariate unified skew-elliptical (SUE) distributions, which extends SUNs to more general perturbations of elliptical densities, guarantees conjugacy for broader classes of models, beyond those relying on fully-observed, discretized or censored Gaussians. Such a result leverages the closure under linear combinations, conditioning and marginalization of SUE to prove that such a family is conjugate to the likelihood induced by general multivariate regression models for fully-observed, censored or dichotomized realizations from skew-elliptical distributions. This advancement substantially enlarges the set of models that enable conjugate Bayesian inference to general formulations arising from elliptical and skew-elliptical families, including the multivariate Student's t and skew-t, among others.
We consider the problem of sketching a set valuation function, which is defined as the expectation of a valuation function of independent random item values. We show that for monotone subadditive or submodular valuation functions satisfying a weak homogeneity condition, or certain other conditions, there exist discretized distributions of item values with $O(k\log(k))$ support sizes that yield a sketch valuation function which is a constant-factor approximation, for any value query for a set of items of cardinality less than or equal to $k$. The discretized distributions can be efficiently computed by an algorithm for each item's value distribution separately. Our results hold under conditions that accommodate a wide range of valuation functions arising in applications, such as the value of a team corresponding to the best performance of a team member, constant elasticity of substitution production functions exhibiting diminishing returns used in economics and consumer theory, and others. Sketch valuation functions are particularly valuable for finding approximate solutions to optimization problems such as best set selection and welfare maximization. They enable computationally efficient evaluation of approximate value oracle queries and provide an approximation guarantee for the underlying optimization problem.
Quantization for a Borel probability measure refers to the idea of estimating a given probability by a discrete probability with support containing a finite number of elements. In this paper, we have considered a Borel probability measure $P$ on $\mathbb R^2$, which has support a nonuniform stretched Sierpi\'{n}ski triangle generated by a set of three contractive similarity mappings on $\mathbb R^2$. For this probability measure, we investigate the optimal sets of $n$-means and the $n$th quantization errors for all positive integers $n$.
We consider a model selection problem for structural equation modeling (SEM) with latent variables for diffusion processes based on high-frequency data. First, we propose the quasi-Akaike information criterion of the SEM and study the asymptotic properties. Next, we consider the situation where the set of competing models includes some misspecified parametric models. It is shown that the probability of choosing the misspecified models converges to zero. Furthermore, examples and simulation results are given.
Mesh-based Graph Neural Networks (GNNs) have recently shown capabilities to simulate complex multiphysics problems with accelerated performance times. However, mesh-based GNNs require a large number of message-passing (MP) steps and suffer from over-smoothing for problems involving very fine mesh. In this work, we develop a multiscale mesh-based GNN framework mimicking a conventional iterative multigrid solver, coupled with adaptive mesh refinement (AMR), to mitigate challenges with conventional mesh-based GNNs. We use the framework to accelerate phase field (PF) fracture problems involving coupled partial differential equations with a near-singular operator due to near-zero modulus inside the crack. We define the initial graph representation using all mesh resolution levels. We perform a series of downsampling steps using Transformer MP GNNs to reach the coarsest graph followed by upsampling steps to reach the original graph. We use skip connectors from the generated embedding during coarsening to prevent over-smoothing. We use Transfer Learning (TL) to significantly reduce the size of training datasets needed to simulate different crack configurations and loading conditions. The trained framework showed accelerated simulation times, while maintaining high accuracy for all cases compared to physics-based PF fracture model. Finally, this work provides a new approach to accelerate a variety of mesh-based engineering multiphysics problems
Resonance based numerical schemes are those in which cancellations in the oscillatory components of the equation are taken advantage of in order to reduce the regularity required of the initial data to achieve a particular order of error and convergence. We investigate the potential for the derivation of resonance based schemes in the context of nonlinear stochastic PDEs. By comparing the regularity conditions required for error analysis to traditional exponential schemes we demonstrate that at orders less than $ \mathcal{O}(t^2) $, the techniques are successful and provide a significant gain on the regularity of the initial data, while at orders greater than $ \mathcal{O}(t^2) $, that the resonance based techniques does not achieve any gain. This is due to limitations in the explicit path-wise analysis of stochastic integrals. As examples of applications of the method, we present schemes for the Schr\"odinger equation and Manakov system accompanied by local error and stability analysis as well as proof of global convergence in both the strong and path-wise sense.
This paper considers the problem of manifold functional multiple regression with functional response, time--varying scalar regressors, and functional error term displaying Long Range Dependence (LRD) in time. Specifically, the error term is given by a manifold multifractionally integrated functional time series (see, e.g., Ovalle--Mu\~noz \& Ruiz--Medina, 2024)). The manifold is defined by a connected and compact two--point homogeneous space. The functional regression parameters have support in the manifold. The Generalized Least--Squares (GLS) estimator of the vector functional regression parameter is computed, and its asymptotic properties are analyzed under a totally specified and misspecified model scenario. A multiscale residual correlation analysis in the simulation study undertaken illustrates the empirical distributional properties of the errors at different spherical resolution levels.
Combinatorial optimization - a field of research addressing problems that feature strongly in a wealth of scientific and industrial contexts - has been identified as one of the core potential fields of applicability of quantum computers. It is still unclear, however, to what extent quantum algorithms can actually outperform classical algorithms for this type of problems. In this work, by resorting to computational learning theory and cryptographic notions, we prove that quantum computers feature an in-principle super-polynomial advantage over classical computers in approximating solutions to combinatorial optimization problems. Specifically, building on seminal work by Kearns and Valiant and introducing a new reduction, we identify special types of problems that are hard for classical computers to approximate up to polynomial factors. At the same time, we give a quantum algorithm that can efficiently approximate the optimal solution within a polynomial factor. The core of the quantum advantage discovered in this work is ultimately borrowed from Shor's quantum algorithm for factoring. Concretely, we prove a super-polynomial advantage for approximating special instances of the so-called integer programming problem. In doing so, we provide an explicit end-to-end construction for advantage bearing instances. This result shows that quantum devices have, in principle, the power to approximate combinatorial optimization solutions beyond the reach of classical efficient algorithms. Our results also give clear guidance on how to construct such advantage-bearing problem instances.