亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a deep learning-based iterative approach to solve the discrete heterogeneous Helmholtz equation for high wavenumbers. Combining classical iterative multigrid solvers and convolutional neural networks (CNNs) via preconditioning, we obtain a learned neural solver that is faster and scales better than a standard multigrid solver. Our approach offers three main contributions over previous neural methods of this kind. First, we construct a multilevel U-Net-like encoder-solver CNN with an implicit layer on the coarsest grid of the U-Net, where convolution kernels are inverted. This alleviates the field of view problem in CNNs and allows better scalability. Second, we improve upon the previous CNN preconditioner in terms of the number of parameters, computation time, and convergence rates. Third, we propose a multiscale training approach that enables the network to scale to problems of previously unseen dimensions while still maintaining a reasonable training procedure. Our encoder-solver architecture can be used to generalize over different slowness models of various difficulties and is efficient at solving for many right-hand sides per slowness model. We demonstrate the benefits of our novel architecture with numerical experiments on a variety of heterogeneous two-dimensional problems at high wavenumbers.

相關內容

We present a method for teaching machines to understand and model the underlying spatial common sense of diverse human-object interactions in 3D in a self-supervised way. This is a challenging task, as there exist specific manifolds of the interactions that can be considered human-like and natural, but the human pose and the geometry of objects can vary even for similar interactions. Such diversity makes the annotating task of 3D interactions difficult and hard to scale, which limits the potential to reason about that in a supervised way. One way of learning the 3D spatial relationship between humans and objects during interaction is by showing multiple 2D images captured from different viewpoints when humans interact with the same type of objects. The core idea of our method is to leverage a generative model that produces high-quality 2D images from an arbitrary text prompt input as an "unbounded" data generator with effective controllability and view diversity. Despite its imperfection of the image quality over real images, we demonstrate that the synthesized images are sufficient to learn the 3D human-object spatial relations. We present multiple strategies to leverage the synthesized images, including (1) the first method to leverage a generative image model for 3D human-object spatial relation learning; (2) a framework to reason about the 3D spatial relations from inconsistent 2D cues in a self-supervised manner via 3D occupancy reasoning with pose canonicalization; (3) semantic clustering to disambiguate different types of interactions with the same object types; and (4) a novel metric to assess the quality of 3D spatial learning of interaction. Project Page: //jellyheadandrew.github.io/projects/chorus

Deep learning methods have been employed in gravitational-wave astronomy to accelerate the construction of surrogate waveforms for the inspiral of spin-aligned black hole binaries, among other applications. We face the challenge of modeling the residual error of an artificial neural network that models the coefficients of the surrogate waveform expansion (especially those of the phase of the waveform) which we demonstrate has sufficient structure to be learnable by a second network. Adding this second network, we were able to reduce the maximum mismatch for waveforms in a validation set by 13.4 times. We also explored several other ideas for improving the accuracy of the surrogate model, such as the exploitation of similarities between waveforms, the augmentation of the training set, the dissection of the input space, using dedicated networks per output coefficient and output augmentation. In several cases, small improvements can be observed, but the most significant improvement still comes from the addition of a second network that models the residual error. Since the residual error for more general surrogate waveform models (when e.g., eccentricity is included) may also have a specific structure, one can expect our method to be applicable to cases where the gain in accuracy could lead to significant gains in computational time.

Honeypots play a crucial role in implementing various cyber deception techniques as they possess the capability to divert attackers away from valuable assets. Careful strategic placement of honeypots in networks should consider not only network aspects but also attackers' preferences. The allocation of honeypots in tactical networks under network mobility is of great interest. To achieve this objective, we present a game-theoretic approach that generates optimal honeypot allocation strategies within an attack/defense scenario. Our proposed approach takes into consideration the changes in network connectivity. In particular, we introduce a two-player dynamic game model that explicitly incorporates the future state evolution resulting from changes in network connectivity. The defender's objective is twofold: to maximize the likelihood of the attacker hitting a honeypot and to minimize the cost associated with deception and reconfiguration due to changes in network topology. We present an iterative algorithm to find Nash equilibrium strategies and analyze the scalability of the algorithm. Finally, we validate our approach and present numerical results based on simulations, demonstrating that our game model successfully enhances network security. Additionally, we have proposed additional enhancements to improve the scalability of the proposed approach.

Machine learning has demonstrated remarkable performance over finite datasets, yet whether the scores over the fixed benchmarks can sufficiently indicate the model's performance in the real world is still in discussion. In reality, an ideal robust model will probably behave similarly to the oracle (e.g., the human users), thus a good evaluation protocol is probably to evaluate the models' behaviors in comparison to the oracle. In this paper, we introduce a new robustness measurement that directly measures the image classification model's performance compared with a surrogate oracle (i.e., a foundation model). Besides, we design a simple method that can accomplish the evaluation beyond the scope of the benchmarks. Our method extends the image datasets with new samples that are sufficiently perturbed to be distinct from the ones in the original sets, but are still bounded within the same image-label structure the original test image represents, constrained by a foundation model pretrained with a large amount of samples. As a result, our new method will offer us a new way to evaluate the models' robustness performance, free of limitations of fixed benchmarks or constrained perturbations, although scoped by the power of the oracle. In addition to the evaluation results, we also leverage our generated data to understand the behaviors of the model and our new evaluation strategies.

Building artificial intelligence (AI) systems on top of a set of foundation models (FMs) is becoming a new paradigm in AI research. Their representative and generative abilities learnt from vast amounts of data can be easily adapted and transferred to a wide range of downstream tasks without extra training from scratch. However, leveraging FMs in cross-modal generation remains under-researched when audio modality is involved. On the other hand, automatically generating semantically-relevant sound from visual input is an important problem in cross-modal generation studies. To solve this vision-to-audio (V2A) generation problem, existing methods tend to design and build complex systems from scratch using modestly sized datasets. In this paper, we propose a lightweight solution to this problem by leveraging foundation models, specifically CLIP, CLAP, and AudioLDM. We first investigate the domain gap between the latent space of the visual CLIP and the auditory CLAP models. Then we propose a simple yet effective mapper mechanism (V2A-Mapper) to bridge the domain gap by translating the visual input between CLIP and CLAP spaces. Conditioned on the translated CLAP embedding, pretrained audio generative FM AudioLDM is adopted to produce high-fidelity and visually-aligned sound. Compared to previous approaches, our method only requires a quick training of the V2A-Mapper. We further analyze and conduct extensive experiments on the choice of the V2A-Mapper and show that a generative mapper is better at fidelity and variability (FD) while a regression mapper is slightly better at relevance (CS). Both objective and subjective evaluation on two V2A datasets demonstrate the superiority of our proposed method compared to current state-of-the-art approaches - trained with 86% fewer parameters but achieving 53% and 19% improvement in FD and CS, respectively.

We propose a learning algorithm for local routing policies that needs only a few data samples obtained from a single graph while generalizing to all random graphs in a standard model of wireless networks. We thus solve the all-pairs near-shortest path problem by training deep neural networks (DNNs) that efficiently and scalably learn routing policies that are local, i.e., they only consider node states and the states of neighboring nodes. Remarkably, one of these DNNs we train learns a policy that exactly matches the performance of greedy forwarding; another generally outperforms greedy forwarding. Our algorithm design exploits network domain knowledge in several ways: First, in the selection of input features and, second, in the selection of a ``seed graph'' and subsamples from its shortest paths. The leverage of domain knowledge provides theoretical explainability of why the seed graph and node subsampling suffice for learning that is efficient, scalable, and generalizable. Simulation-based results on uniform random graphs with diverse sizes and densities empirically corroborate that using samples generated from a few routing paths in a modest-sized seed graph quickly learns a model that is generalizable across (almost) all random graphs in the wireless network model.

State-of-the-art rehearsal-free continual learning methods exploit the peculiarities of Vision Transformers to learn task-specific prompts, drastically reducing catastrophic forgetting. However, there is a tradeoff between the number of learned parameters and the performance, making such models computationally expensive. In this work, we aim to reduce this cost while maintaining competitive performance. We achieve this by revisiting and extending a simple transfer learning idea: learning task-specific normalization layers. Specifically, we tune the scale and bias parameters of LayerNorm for each continual learning task, selecting them at inference time based on the similarity between task-specific keys and the output of the pre-trained model. To make the classifier robust to incorrect selection of parameters during inference, we introduce a two-stage training procedure, where we first optimize the task-specific parameters and then train the classifier with the same selection procedure of the inference time. Experiments on ImageNet-R and CIFAR-100 show that our method achieves results that are either superior or on par with {the state of the art} while being computationally cheaper.

Regret minimization methods are a powerful tool for learning approximate Nash equilibrium (NE) in two-player zero-sum imperfect information extensive-form games (IIEGs). We consider the problem in the interactive bandit-feedback setting where we don't know the dynamics of the IIEG. In general, only the interactive trajectory and the reached terminal node value $v(z^t)$ are revealed. To learn NE, the regret minimizer is required to estimate the full-feedback loss gradient $\ell^t$ by $v(z^t)$ and minimize the regret. In this paper, we propose a generalized framework for this learning setting. It presents a theoretical framework for the design and the modular analysis of the bandit regret minimization methods. We demonstrate that the most recent bandit regret minimization methods can be analyzed as a particular case of our framework. Following this framework, we describe a novel method SIX-OMD to learn approximate NE. It is model-free and extremely improves the best existing convergence rate from the order of $O(\sqrt{X B/T}+\sqrt{Y C/T})$ to $O(\sqrt{ M_{\mathcal{X}}/T} +\sqrt{ M_{\mathcal{Y}}/T})$. Moreover, SIX-OMD is computationally efficient as it needs to perform the current strategy and average strategy updates only along the sampled trajectory.

Conventional beamforming with fixed-position antenna (FPA) arrays has a fundamental trade-off between maximizing the signal power (array gain) over a desired direction and simultaneously minimizing the interference power over undesired directions. To overcome this limitation, this letter investigates the movable antenna (MA) array enhanced beamforming by exploiting the new degree of freedom (DoF) via antenna position optimization, in addition to the design of antenna weights. We show that by jointly optimizing the antenna positions vector (APV) and antenna weights vector (AWV) of a linear MA array, the full array gain can be achieved over the desired direction while null steering can be realized over all undesired directions, under certain numbers of MAs and null-steering directions. The optimal solutions for AWV and APV are derived in closed form, which reveal that the optimal AWV for MA arrays requires only the signal phase adjustment with a fixed amplitude. Numerical results validate our analytical solutions for MA array beamforming and show their superior performance to the conventional beamforming techniques with FPA arrays.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

北京阿比特科技有限公司