亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper the authors study a non-linear elliptic-parabolic system, which is motivated by mathematical models for lithium-ion batteries. One state satisfies a parabolic reaction diffusion equation and the other one an elliptic equation. The goal is to determine several scalar parameters in the coupled model in an optimal manner by utilizing a reliable reduced-order approach based on the reduced basis (RB) method. However, the states are coupled through a strongly non-linear function, and this makes the evaluation of online-efficient error estimates difficult. First the well-posedness of the system is proved. Then a Galerkin finite element and RB discretization is described for the coupled system. To certify the RB scheme hierarchical a-posteriori error estimators are utilized in an adaptive trust-region optimization method. Numerical experiments illustrate good approximation properties and efficiencies by using only a relatively small number of reduced bases functions.

相關內容

Traditional geometric registration based estimation methods only exploit the CAD model implicitly, which leads to their dependence on observation quality and deficiency to occlusion. To address the problem,the paper proposes a bidirectional correspondence prediction network with a point-wise attention-aware mechanism. This network not only requires the model points to predict the correspondence but also explicitly models the geometric similarities between observations and the model prior. Our key insight is that the correlations between each model point and scene point provide essential information for learning point-pair matches. To further tackle the correlation noises brought by feature distribution divergence, we design a simple but effective pseudo-siamese network to improve feature homogeneity. Experimental results on the public datasets of LineMOD, YCB-Video, and Occ-LineMOD show that the proposed method achieves better performance than other state-of-the-art methods under the same evaluation criteria. Its robustness in estimating poses is greatly improved, especially in an environment with severe occlusions.

Despite the promising progress in multi-modal tasks, current large multi-modal models (LMM) are prone to hallucinating inconsistent descriptions with respect to the associated image and human instructions. This paper addresses this issue by introducing the first large and diverse visual instruction tuning dataset, named Large-scale Robust Visual (LRV)-Instruction. Our dataset consists of 120k visual instructions generated by GPT4, covering 16 vision-and-language tasks with open-ended instructions and answers. Unlike existing studies that primarily focus on positive instruction samples, we design LRV-Instruction to include both positive and negative instructions for more robust visual instruction tuning. Our negative instructions are designed at two semantic levels: (i) Nonexistent Element Manipulation and (ii) Existent Element Manipulation. To efficiently measure the hallucination generated by LMMs, we propose GPT4-Assisted Visual Instruction Evaluation (GAVIE), a novel approach to evaluate visual instruction tuning without the need for human-annotated groundtruth answers and can adapt to diverse instruction formats. We conduct comprehensive experiments to investigate the hallucination of LMMs. Our results demonstrate that existing LMMs exhibit significant hallucination when presented with our negative instructions, particularly with Existent Element Manipulation instructions. Moreover, by finetuning MiniGPT4 on LRV-Instruction, we successfully mitigate hallucination while improving performance on public datasets using less training data compared to state-of-the-art methods. Additionally, we observed that a balanced ratio of positive and negative instances in the training data leads to a more robust model. Updates of our project are available at //fuxiaoliu.github.io/LRV/.

Inertia-dominated mechanical systems can achieve net displacement by 1) periodically changing their shape (known as kinematic gait) and 2) adjusting their inertia distribution to utilize the existing nonzero net momentum (known as momentum gait). Therefore, finding the gait that most effectively utilizes the two types of locomotion in terms of the magnitude of the net momentum is a significant topic in the study of locomotion. For kinematic locomotion with zero net momentum, the geometry of optimal gaits is expressed as the equilibria of system constraint curvature flux through the surface bounded by the gait, and the cost associated with executing the gait in the metric space. In this paper, we identify the geometry of optimal gaits with nonzero net momentum effects by lifting the gait description to a time-parameterized curve in shape-time space. We also propose the variational gait optimization algorithm corresponding to the lifted geometric structure, and identify two distinct patterns in the optimal motion, determined by whether or not the kinematic and momentum gaits are concentric. The examples of systems with and without fluid-added mass demonstrate that the proposed algorithm can efficiently solve forward and turning locomotion gaits in the presence of nonzero net momentum. At any given momentum and effort limit, the proposed optimal gait that takes into account both momentum and kinematic effects outperforms the reference gaits that each only considers one of these effects.

Maximum mean discrepancy (MMD) refers to a general class of nonparametric two-sample tests that are based on maximizing the mean difference over samples from one distribution $P$ versus another $Q$, over all choices of data transformations $f$ living in some function space $\mathcal{F}$. Inspired by recent work that connects what are known as functions of $\textit{Radon bounded variation}$ (RBV) and neural networks (Parhi and Nowak, 2021, 2023), we study the MMD defined by taking $\mathcal{F}$ to be the unit ball in the RBV space of a given smoothness order $k \geq 0$. This test, which we refer to as the $\textit{Radon-Kolmogorov-Smirnov}$ (RKS) test, can be viewed as a generalization of the well-known and classical Kolmogorov-Smirnov (KS) test to multiple dimensions and higher orders of smoothness. It is also intimately connected to neural networks: we prove that the witness in the RKS test -- the function $f$ achieving the maximum mean difference -- is always a ridge spline of degree $k$, i.e., a single neuron in a neural network. This allows us to leverage the power of modern deep learning toolkits to (approximately) optimize the criterion that underlies the RKS test. We prove that the RKS test has asymptotically full power at distinguishing any distinct pair $P \not= Q$ of distributions, derive its asymptotic null distribution, and carry out extensive experiments to elucidate the strengths and weakenesses of the RKS test versus the more traditional kernel MMD test.

Research in the field of Materials Science and Engineering focuses on the design, synthesis, properties, and performance of materials. An important class of materials that is widely investigated are crystalline materials, including metals and semiconductors. Crystalline material typically contains a distinct type of defect called "dislocation". This defect significantly affects various material properties, including strength, fracture toughness, and ductility. Researchers have devoted a significant effort in recent years to understanding dislocation behavior through experimental characterization techniques and simulations, e.g., dislocation dynamics simulations. This paper presents how data from dislocation dynamics simulations can be modeled using semantic web technologies through annotating data with ontologies. We extend the already existing Dislocation Ontology by adding missing concepts and aligning it with two other domain-related ontologies (i.e., the Elementary Multi-perspective Material Ontology and the Materials Design Ontology) allowing for representing the dislocation simulation data efficiently. Moreover, we show a real-world use case by representing the discrete dislocation dynamics data as a knowledge graph (DisLocKG) that illustrates the relationship between them. We also developed a SPARQL endpoint that brings extensive flexibility to query DisLocKG.

Geoscience foundation models represent a revolutionary approach in the field of Earth sciences by integrating massive cross-disciplinary data to simulate and understand the Earth systems dynamics. As a data-centric artificial intelligence (AI) paradigm, they uncover insights from petabytes of structured and unstructured data. Flexible task specification, diverse inputs and outputs and multi-modal knowledge representation enable comprehensive analysis infeasible with individual data sources. Critically, the scalability and generalizability of geoscience models allow for tackling diverse prediction, simulation, and decision challenges related to Earth systems interactions. Collaboration between domain experts and computer scientists leads to innovations in these invaluable tools for understanding the past, present, and future of our planet. However, challenges remain in validation and verification, scale, interpretability, knowledge representation, and social bias. Going forward, enhancing model integration, resolution, accuracy, and equity through cross-disciplinary teamwork is key. Despite current limitations, geoscience foundation models show promise for providing critical insights into pressing issues including climate change, natural hazards, and sustainability through their ability to probe scenarios and quantify uncertainties. Their continued evolution toward integrated, data-driven modeling holds paradigm-shifting potential for Earth science.

Visible-infrared person re-identification (VI-ReID) is a challenging task due to large cross-modality discrepancies and intra-class variations. Existing methods mainly focus on learning modality-shared representations by embedding different modalities into the same feature space. As a result, the learned feature emphasizes the common patterns across modalities while suppressing modality-specific and identity-aware information that is valuable for Re-ID. To address these issues, we propose a novel Modality Unifying Network (MUN) to explore a robust auxiliary modality for VI-ReID. First, the auxiliary modality is generated by combining the proposed cross-modality learner and intra-modality learner, which can dynamically model the modality-specific and modality-shared representations to alleviate both cross-modality and intra-modality variations. Second, by aligning identity centres across the three modalities, an identity alignment loss function is proposed to discover the discriminative feature representations. Third, a modality alignment loss is introduced to consistently reduce the distribution distance of visible and infrared images by modality prototype modeling. Extensive experiments on multiple public datasets demonstrate that the proposed method surpasses the current state-of-the-art methods by a significant margin.

Incidence estimation of HIV infection can be performed using recent infection testing algorithm (RITA) results from a cross-sectional sample. This allows practitioners to understand population trends in the HIV epidemic without having to perform longitudinal follow-up on a cohort of individuals. The utility of the approach is limited by its precision, driven by the (low) sensitivity of the RITA at identifying recent infection. By utilizing results of previous HIV tests that individuals may have taken, we consider an enhanced RITA with increased sensitivity (and specificity). We use it to propose an enhanced estimator for incidence estimation. We prove the theoretical properties of the enhanced estimator and illustrate its numerical performance in simulation studies. We apply the estimator to data from a cluster-randomized trial to study the effect of community-level HIV interventions on HIV incidence. We demonstrate that the enhanced estimator provides a more precise estimate of HIV incidence compared to the standard estimator.

Unsupervised contrastive learning methods have recently seen significant improvements, particularly through data augmentation strategies that aim to produce robust and generalizable representations. However, prevailing data augmentation methods, whether hand designed or based on foundation models, tend to rely heavily on prior knowledge or external data. This dependence often compromises their effectiveness and efficiency. Furthermore, the applicability of most existing data augmentation strategies is limited when transitioning to other research domains, especially science-related data. This limitation stems from the paucity of prior knowledge and labeled data available in these domains. To address these challenges, we introduce DiffAug-a novel and efficient Diffusion-based data Augmentation technique. DiffAug aims to ensure that the augmented and original data share a smoothed latent space, which is achieved through diffusion steps. Uniquely, unlike traditional methods, DiffAug first mines sufficient prior semantic knowledge about the neighborhood. This provides a constraint to guide the diffusion steps, eliminating the need for labels, external data/models, or prior knowledge. Designed as an architecture-agnostic framework, DiffAug provides consistent improvements. Specifically, it improves image classification and clustering accuracy by 1.6%~4.5%. When applied to biological data, DiffAug improves performance by up to 10.1%, with an average improvement of 5.8%. DiffAug shows good performance in both vision and biological domains.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

北京阿比特科技有限公司