亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Although remote working is increasingly adopted during the pandemic, many are concerned by the low-efficiency in the remote working. Missing in text-based communication are non-verbal cues such as facial expressions and body language, which hinders the effective communication and negatively impacts the work outcomes. Prevalent on social media platforms, emojis, as alternative non-verbal cues, are gaining popularity in the virtual workspaces well. In this paper, we study how emoji usage influences developer participation and issue resolution in virtual workspaces. To this end, we collect GitHub issues for a one-year period and apply causal inference techniques to measure the causal effect of emojis on the outcome of issues, controlling for confounders such as issue content, repository, and author information. We find that emojis can significantly reduce the resolution time of issues and attract more user participation. We also compare the heterogeneous effect on different types of issues. These findings deepen our understanding of the developer communities, and they provide design implications on how to facilitate interactions and broaden developer participation.

相關內容

使用 Git 作為版本控制系統(version control system)提供在線源碼托管的服務,同時是個有社交功能的開發者社區。 國外類似服務:

國內類似服務:

Quality estimation models have been developed to assess the corrections made by grammatical error correction (GEC) models when the reference or gold-standard corrections are not available. An ideal quality estimator can be utilized to combine the outputs of multiple GEC systems by choosing the best subset of edits from the union of all edits proposed by the GEC base systems. However, we found that existing GEC quality estimation models are not good enough in differentiating good corrections from bad ones, resulting in a low F0.5 score when used for system combination. In this paper, we propose GRECO, a new state-of-the-art quality estimation model that gives a better estimate of the quality of a corrected sentence, as indicated by having a higher correlation to the F0.5 score of a corrected sentence. It results in a combined GEC system with a higher F0.5 score. We also propose three methods for utilizing GEC quality estimation models for system combination with varying generality: model-agnostic, model-agnostic with voting bias, and model-dependent method. The combined GEC system outperforms the state of the art on the CoNLL-2014 test set and the BEA-2019 test set, achieving the highest F0.5 scores published to date.

Anomaly Detection (AD) is a critical task that involves identifying observations that do not conform to a learned model of normality. Prior work in deep AD is predominantly based on a familiarity hypothesis, where familiar features serve as the reference in a pre-trained embedding space. While this strategy has proven highly successful, it turns out that it causes consistent false negatives when anomalies consist of truly novel features that are not well captured by the pre-trained encoding. We propose a novel approach to AD using explainability to capture novel features as unexplained observations in the input space. We achieve strong performance across a wide range of anomaly benchmarks by combining similarity and novelty in a hybrid approach. Our approach establishes a new state-of-the-art across multiple benchmarks, handling diverse anomaly types while eliminating the need for expensive background models and dense matching. In particular, we show that by taking account of novel features, we reduce false negative anomalies by up to 40% on challenging benchmarks compared to the state-of-the-art. Our method gives visually inspectable explanations for pixel-level anomalies.

We consider a causal inference model in which individuals interact in a social network and they may not comply with the assigned treatments. In particular, we suppose that the form of network interference is unknown to researchers. To estimate meaningful causal parameters in this situation, we introduce a new concept of exposure mapping, which summarizes potentially complicated spillover effects into a fixed dimensional statistic of instrumental variables. We investigate identification conditions for the intention-to-treat effects and the average treatment effects for compliers, while explicitly considering the possibility of misspecification of exposure mapping. Based on our identification results, we develop nonparametric estimation procedures via inverse probability weighting. Their asymptotic properties, including consistency and asymptotic normality, are investigated using an approximate neighborhood interference framework. For an empirical illustration, we apply our method to experimental data on the anti-conflict intervention school program. The proposed methods are readily available with the companion R package latenetwork.

Large integer factorization is a prominent research challenge, particularly in the context of quantum computing. This holds significant importance, especially in information security that relies on public key cryptosystems. The classical computation of prime factors for an integer has exponential time complexity. Quantum computing offers the potential for significantly faster computational processes compared to classical processors. In this paper, we propose a new quantum algorithm, Shallow Depth Factoring (SDF), to factor a biprime integer. SDF consists of three steps. First, it converts a factoring problem to an optimization problem without an objective function. Then, it uses a Quantum Feasibility Labeling (QFL) method to label every possible solution according to whether it is feasible or infeasible for the optimization problem. Finally, it employs the Variational Quantum Search (VQS) to find all feasible solutions. The SDF utilizes shallow-depth quantum circuits for efficient factorization, with the circuit depth scaling linearly as the integer to be factorized increases. Through minimizing the number of gates in the circuit, the algorithm enhances feasibility and reduces vulnerability to errors.

Limiting the injection rate to restrict the pressure below a threshold at a critical location can be an important goal of simulations that model the subsurface pressure between injection and extraction wells. The pressure is approximated by the solution of Darcy's partial differential equation (PDE) for a given permeability field. The subsurface permeability is modeled as a random field since it is known only up to statistical properties. This induces uncertainty in the computed pressure. Solving the PDE for an ensemble of random permeability simulations enables estimating a probability distribution for the pressure at the critical location. These simulations are computationally expensive, and practitioners often need rapid online guidance for real-time pressure management. An ensemble of numerical PDE solutions is used to construct a Gaussian process regression model that can quickly predict the pressure at the critical location as a function of the extraction rate and permeability realization. Our first novel contribution is to identify a sampling methodology for the random environment and matching kernel technology for which fitting the Gaussian process regression model scales as O(n log n) instead of the typical O(n^3) rate in the number of samples n used to fit the surrogate. The surrogate model allows almost instantaneous predictions for the pressure at the critical location as a function of the extraction rate and permeability realization. Our second contribution is a novel algorithm to calibrate the uncertainty in the surrogate model to the discrepancy between the true pressure solution of Darcy's equation and the numerical solution. Although our method is derived for building a surrogate for the solution of Darcy's equation with a random permeability field, the framework broadly applies to solutions of other PDE with random coefficients.

To promote the generalization ability of breast tumor segmentation models, as well as to improve the segmentation performance for breast tumors with smaller size, low-contrast amd irregular shape, we propose a progressive dual priori network (PDPNet) to segment breast tumors from dynamic enhanced magnetic resonance images (DCE-MRI) acquired at different sites. The PDPNet first cropped tumor regions with a coarse-segmentation based localization module, then the breast tumor mask was progressively refined by using the weak semantic priori and cross-scale correlation prior knowledge. To validate the effectiveness of PDPNet, we compared it with several state-of-the-art methods on multi-center datasets. The results showed that, comparing against the suboptimal method, the DSC, SEN, KAPPA and HD95 of PDPNet were improved 3.63\%, 8.19\%, 5.52\%, and 3.66\% respectively. In addition, through ablations, we demonstrated that the proposed localization module can decrease the influence of normal tissues and therefore improve the generalization ability of the model. The weak semantic priors allow focusing on tumor regions to avoid missing small tumors and low-contrast tumors. The cross-scale correlation priors are beneficial for promoting the shape-aware ability for irregual tumors. Thus integrating them in a unified framework improved the multi-center breast tumor segmentation performance.

Sequential transfer optimization (STO), which aims to improve the optimization performance on a task of interest by exploiting the knowledge captured from several previously-solved optimization tasks stored in a database, has been gaining increasing research attention over the years. However, despite the remarkable advances in algorithm design, the development of a systematic benchmark suite for comprehensive comparisons of STO algorithms received far less attention. Existing test problems are either simply generated by assembling other benchmark functions or extended from specific practical problems with limited scalability. The relationships between the optimal solutions of the source and target tasks in these problems are also often manually configured, limiting their ability to model different similarity relationships presented in real-world problems. Consequently, the good performance achieved by an algorithm on these problems might be biased and hard to be generalized to other problems. In light of the above, in this study, we first introduce four concepts for characterizing STO problems and present an important problem feature, namely similarity distribution, which quantitatively delineates the relationship between the optima of the source and target tasks. Then, we present the general design guidelines of STO problems and a particular STO problem generator with good scalability. Specifically, the similarity distribution of a problem can be easily customized, enabling a continuous spectrum of representation of the diverse similarity relationships of real-world problems. Lastly, a benchmark suite with 12 STO problems featured by a variety of customized similarity relationships is developed using the proposed generator. The source code of the problem generator is available at //github.com/XmingHsueh/STOP-G.

Inference, especially those derived from inductive processes, is a crucial component in our conversation to complement the information implicitly or explicitly conveyed by a speaker. While recent large language models show remarkable advances in inference tasks, their performance in inductive reasoning, where not all information is present in the context, is far behind deductive reasoning. In this paper, we analyze the behavior of the models based on the task difficulty defined by the semantic information gap -- which distinguishes inductive and deductive reasoning (Johnson-Laird, 1988, 1993). Our analysis reveals that the disparity in information between dialogue contexts and desired inferences poses a significant challenge to the inductive inference process. To mitigate this information gap, we investigate a contrastive learning approach by feeding negative samples. Our experiments suggest negative samples help models understand what is wrong and improve their inference generations.

Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

北京阿比特科技有限公司