亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Consider a system of identical server pools where tasks with exponentially distributed service times arrive as a time-inhomogenenous Poisson process. An admission threshold is used in an inner control loop to assign incoming tasks to server pools while, in an outer control loop, a learning scheme adjusts this threshold over time to keep it aligned with the unknown offered load of the system. In a many-server regime, we prove that the learning scheme reaches an equilibrium along intervals of time where the normalized offered load per server pool is suitably bounded, and that this results in a balanced distribution of the load. Furthermore, we establish a similar result when tasks with Coxian distributed service times arrive at a constant rate and the threshold is adjusted using only the total number of tasks in the system. The novel proof technique developed in this paper, which differs from a traditional fluid limit analysis, allows to handle rapid variations of the first learning scheme, triggered by excursions of the occupancy process that have vanishing size. Moreover, our approach allows to characterize the asymptotic behavior of the system with Coxian distributed service times without relying on a fluid limit of a detailed state descriptor.

相關內容

A burgeoning paradigm in algorithm design is the field of algorithms with predictions, in which algorithms are designed to take advantage of a possibly-imperfect prediction of some aspect of the problem. While much work has focused on using predictions to improve competitive ratios, running times, or other performance measures, less effort has been devoted to the question of how to obtain the predictions themselves, especially in the critical online setting. We introduce a general design approach for algorithms that learn predictors: (1) identify a functional dependence of the performance measure on the prediction quality, and (2) apply techniques from online learning to learn predictors against adversarial instances, tune robustness-consistency trade-offs, and obtain new statistical guarantees. We demonstrate the effectiveness of our approach at deriving learning algorithms by analyzing methods for bipartite matching, page migration, ski-rental, and job scheduling. In the first and last settings we improve upon existing learning-theoretic results by deriving online results, obtaining better or more general statistical guarantees, and utilizing a much simpler analysis, while in the second and fourth we provide the first learning-theoretic guarantees.

We consider the problem of learning from training data obtained in different contexts, where the underlying context distribution is unknown and is estimated empirically. We develop a robust method that takes into account the uncertainty of the context distribution. Unlike the conventional and overly conservative minimax approach, we focus on excess risks and construct distribution sets with statistical coverage to achieve an appropriate trade-off between performance and robustness. The proposed method is computationally scalable and shown to interpolate between empirical risk minimization and minimax regret objectives. Using both real and synthetic data, we demonstrate its ability to provide robustness in worst-case scenarios without harming performance in the nominal scenario.

In scalable machine learning systems, model training is often parallelized over multiple nodes that run without tight synchronization. Most analysis results for the related asynchronous algorithms use an upper bound on the information delays in the system to determine learning rates. Not only are such bounds hard to obtain in advance, but they also result in unnecessarily slow convergence. In this paper, we show that it is possible to use learning rates that depend on the actual time-varying delays in the system. We develop general convergence results for delay-adaptive asynchronous iterations and specialize these to proximal incremental gradient descent and block-coordinate descent algorithms. For each of these methods, we demonstrate how delays can be measured on-line, present delay-adaptive step-size policies, and illustrate their theoretical and practical advantages over the state-of-the-art.

This paper studies the sensitivity (or insensitivity) of a class of load balancing algorithms that achieve asymptotic zero-waiting in the sub-Halfin-Whitt regime, named LB-zero. Most existing results on zero-waiting load balancing algorithms assume the service time distribution is exponential. This paper establishes the {\em large-system insensitivity} of LB-zero for jobs whose service time follows a Coxian distribution with a finite number of phases. This result suggests that LB-zero achieves asymptotic zero-waiting for a large class of service time distributions, which is confirmed in our simulations. To prove this result, this paper develops a new technique, called "Iterative State-Space Peeling" (or ISSP for short). ISSP first identifies an iterative relation between the upper and lower bounds on the queue states and then proves that the system lives near the fixed point of the iterative bounds with a high probability. Based on ISSP, the steady-state distribution of the system is further analyzed by applying Stein's method in the neighborhood of the fixed point. ISSP, like state-space collapse in heavy-traffic analysis, is a general approach that may be used to study other complex stochastic systems.

We study online control of time-varying linear systems with unknown dynamics in the nonstochastic control model. At a high level, we demonstrate that this setting is \emph{qualitatively harder} than that of either unknown time-invariant or known time-varying dynamics, and complement our negative results with algorithmic upper bounds in regimes where sublinear regret is possible. More specifically, we study regret bounds with respect to common classes of policies: Disturbance Action (SLS), Disturbance Response (Youla), and linear feedback policies. While these three classes are essentially equivalent for LTI systems, we demonstrate that these equivalences break down for time-varying systems. We prove a lower bound that no algorithm can obtain sublinear regret with respect to the first two classes unless a certain measure of system variability also scales sublinearly in the horizon. Furthermore, we show that offline planning over the state linear feedback policies is NP-hard, suggesting hardness of the online learning problem. On the positive side, we give an efficient algorithm that attains a sublinear regret bound against the class of Disturbance Response policies up to the aforementioned system variability term. In fact, our algorithm enjoys sublinear \emph{adaptive} regret bounds, which is a strictly stronger metric than standard regret and is more appropriate for time-varying systems. We sketch extensions to Disturbance Action policies and partial observation, and propose an inefficient algorithm for regret against linear state feedback policies.

This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.

Training large deep neural networks on massive datasets is computationally very challenging. There has been recent surge in interest in using large batch stochastic optimization methods to tackle this issue. The most prominent algorithm in this line of research is LARS, which by employing layerwise adaptive learning rates trains ResNet on ImageNet in a few minutes. However, LARS performs poorly for attention models like BERT, indicating that its performance gains are not consistent across tasks. In this paper, we first study a principled layerwise adaptation strategy to accelerate training of deep neural networks using large mini-batches. Using this strategy, we develop a new layerwise adaptive large batch optimization technique called LAMB; we then provide convergence analysis of LAMB as well as LARS, showing convergence to a stationary point in general nonconvex settings. Our empirical results demonstrate the superior performance of LAMB across various tasks such as BERT and ResNet-50 training with very little hyperparameter tuning. In particular, for BERT training, our optimizer enables use of very large batch sizes of 32868 without any degradation of performance. By increasing the batch size to the memory limit of a TPUv3 Pod, BERT training time can be reduced from 3 days to just 76 minutes (Table 1).

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

Many recent machine learning models rely on fine-grained dynamic control flow for training and inference. In particular, models based on recurrent neural networks and on reinforcement learning depend on recurrence relations, data-dependent conditional execution, and other features that call for dynamic control flow. These applications benefit from the ability to make rapid control-flow decisions across a set of computing devices in a distributed system. For performance, scalability, and expressiveness, a machine learning system must support dynamic control flow in distributed and heterogeneous environments. This paper presents a programming model for distributed machine learning that supports dynamic control flow. We describe the design of the programming model, and its implementation in TensorFlow, a distributed machine learning system. Our approach extends the use of dataflow graphs to represent machine learning models, offering several distinctive features. First, the branches of conditionals and bodies of loops can be partitioned across many machines to run on a set of heterogeneous devices, including CPUs, GPUs, and custom ASICs. Second, programs written in our model support automatic differentiation and distributed gradient computations, which are necessary for training machine learning models that use control flow. Third, our choice of non-strict semantics enables multiple loop iterations to execute in parallel across machines, and to overlap compute and I/O operations. We have done our work in the context of TensorFlow, and it has been used extensively in research and production. We evaluate it using several real-world applications, and demonstrate its performance and scalability.

This paper presents a safety-aware learning framework that employs an adaptive model learning method together with barrier certificates for systems with possibly nonstationary agent dynamics. To extract the dynamic structure of the model, we use a sparse optimization technique, and the resulting model will be used in combination with control barrier certificates which constrain feedback controllers only when safety is about to be violated. Under some mild assumptions, solutions to the constrained feedback-controller optimization are guaranteed to be globally optimal, and the monotonic improvement of a feedback controller is thus ensured. In addition, we reformulate the (action-)value function approximation to make any kernel-based nonlinear function estimation method applicable. We then employ a state-of-the-art kernel adaptive filtering technique for the (action-)value function approximation. The resulting framework is verified experimentally on a brushbot, whose dynamics is unknown and highly complex.

北京阿比特科技有限公司