亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show that every graph with pathwidth strictly less than $a$ that contains no path on $2^b$ vertices as a subgraph has treedepth at most $10ab$. The bound is best possible up to a constant factor.

相關內容

We propose a new reduced order modeling strategy for tackling parametrized Partial Differential Equations (PDEs) with linear constraints, in particular Darcy flow systems in which the constraint is given by mass conservation. Our approach employs classical neural network architectures and supervised learning, but it is constructed in such a way that the resulting Reduced Order Model (ROM) is guaranteed to satisfy the linear constraints exactly. The procedure is based on a splitting of the PDE solution into a particular solution satisfying the constraint and a homogenous solution. The homogeneous solution is approximated by mapping a suitable potential function, generated by a neural network model, onto the kernel of the constraint operator; for the particular solution, instead, we propose an efficient spanning tree algorithm. Starting from this paradigm, we present three approaches that follow this methodology, obtained by exploring different choices of the potential spaces: from empirical ones, derived via Proper Orthogonal Decomposition (POD), to more abstract ones based on differential complexes. All proposed approaches combine computational efficiency with rigorous mathematical interpretation, thus guaranteeing the explainability of the model outputs. To demonstrate the efficacy of the proposed strategies and to emphasize their advantages over vanilla black-box approaches, we present a series of numerical experiments on fluid flows in porous media, ranging from mixed-dimensional problems to nonlinear systems. This research lays the foundation for further exploration and development in the realm of model order reduction, potentially unlocking new capabilities and solutions in computational geosciences and beyond.

We address the communication overhead of distributed sparse matrix-(multiple)-vector multiplication in the context of large-scale eigensolvers, using filter diagonalization as an example. The basis of our study is a performance model which includes a communication metric that is computed directly from the matrix sparsity pattern without running any code. The performance model quantifies to which extent scalability and parallel efficiency are lost due to communication overhead. To restore scalability, we identify two orthogonal layers of parallelism in the filter diagonalization technique. In the horizontal layer the rows of the sparse matrix are distributed across individual processes. In the vertical layer bundles of multiple vectors are distributed across separate process groups. An analysis in terms of the communication metric predicts that scalability can be restored if, and only if, one implements the two orthogonal layers of parallelism via different distributed vector layouts. Our theoretical analysis is corroborated by benchmarks for application matrices from quantum and solid state physics, road networks, and nonlinear programming. We finally demonstrate the benefits of using orthogonal layers of parallelism with two exemplary application cases -- an exciton and a strongly correlated electron system -- which incur either small or large communication overhead.

We construct and analyze finite element approximations of the Einstein tensor in dimension $N \ge 3$. We focus on the setting where a smooth Riemannian metric tensor $g$ on a polyhedral domain $\Omega \subset \mathbb{R}^N$ has been approximated by a piecewise polynomial metric $g_h$ on a simplicial triangulation $\mathcal{T}$ of $\Omega$ having maximum element diameter $h$. We assume that $g_h$ possesses single-valued tangential-tangential components on every codimension-1 simplex in $\mathcal{T}$. Such a metric is not classically differentiable in general, but it turns out that one can still attribute meaning to its Einstein curvature in a distributional sense. We study the convergence of the distributional Einstein curvature of $g_h$ to the Einstein curvature of $g$ under refinement of the triangulation. We show that in the $H^{-2}(\Omega)$-norm, this convergence takes place at a rate of $O(h^{r+1})$ when $g_h$ is an optimal-order interpolant of $g$ that is piecewise polynomial of degree $r \ge 1$. We provide numerical evidence to support this claim.

We explore the maximum likelihood degree of a homogeneous polynomial $F$ on a projective variety $X$, $\mathrm{MLD}_F(X)$, which generalizes the concept of Gaussian maximum likelihood degree. We show that $\mathrm{MLD}_F(X)$ is equal to the count of critical points of a rational function on $X$, and give different geometric characterizations of it via topological Euler characteristic, dual varieties, and Chern classes.

We study the convergence of specific inexact alternating projections for two non-convex sets in a Euclidean space. The $\sigma$-quasioptimal metric projection ($\sigma \geq 1$) of a point $x$ onto a set $A$ consists of points in $A$ the distance to which is at most $\sigma$ times larger than the minimal distance $\mathrm{dist}(x,A)$. We prove that quasioptimal alternating projections, when one or both projections are quasioptimal, converge locally and linearly for super-regular sets with transversal intersection. The theory is motivated by the successful application of alternating projections to low-rank matrix and tensor approximation. We focus on two problems -- nonnegative low-rank approximation and low-rank approximation in the maximum norm -- and develop fast alternating-projection algorithms for matrices and tensor trains based on cross approximation and acceleration techniques. The numerical experiments confirm that the proposed methods are efficient and suggest that they can be used to regularise various low-rank computational routines.

Within dependent type theory, we provide a topological counterpart of well-founded trees (for short, W-types) by using a proof-relevant version of the notion of inductively generated suplattices introduced in the context of formal topology under the name of inductively generated basic covers. In more detail, we show, firstly, that in Homotopy Type Theory, W-types and proof relevant inductively generated basic covers are propositionally mutually encodable. Secondly, we prove they are definitionally mutually encodable in the Agda implementation of intensional Martin-Loef's type theory. Finally, we reframe the equivalence in the Minimalist Foundation framework by introducing well-founded predicates as the logical counterpart for predicates of dependent W-types. All the results have been checked in the Agda proof-assistant.

The problem this article addresses is, given a formal specification of a system, how to produce an attack tree that correctly and clearly describes the ways the system can be attacked. Correctness means that the attacks displayed by the attack tree are indeed attacks in the system; clarity means that the tree is efficient in communicating the attack scenario. To pursue clarity, we introduce an attack-tree generation algorithm that minimises the tree size and the information length of its labels without sacrificing correctness. We achieve this by establishing a connection between the problem of factorising algebraic expressions and the problem of minimising the tree size. Notably, our generation algorithm can handle complex attacks that execute actions in parallel and sequentially. For completeness, we introduce a system model that integrates well with our generation approach, and validate the resulting framework via a running example.

We build an asymptotically compatible energy of the variable-step L2-$1_{\sigma}$ scheme for the time-fractional Allen-Cahn model with the Caputo's fractional derivative of order $\alpha\in(0,1)$, under a weak step-ratio constraint $\tau_k/\tau_{k-1}\geq r_{\star}(\alpha)$ for $k\ge2$, where $\tau_k$ is the $k$-th time-step size and $r_{\star}(\alpha)\in(0.3865,0.4037)$ for $\alpha\in(0,1)$. It provides a positive answer to the open problem in [J. Comput. Phys., 414:109473], and, to the best of our knowledge, it is the first second-order nonuniform time-stepping scheme to preserve both the maximum bound principle and the energy dissipation law of time-fractional Allen-Cahn model. The compatible discrete energy is constructed via a novel discrete gradient structure of the second-order L2-$1_{\sigma}$ formula by a local-nonlocal splitting technique. It splits the discrete fractional derivative into two parts: one is a local term analogue to the trapezoid rule of the first derivative and the other is a nonlocal summation analogue to the L1 formula of Caputo derivative. Numerical examples with an adaptive time-stepping strategy are provided to show the effectiveness of our scheme and the asymptotic properties of the associated modified energy.

For a graph whose vertices are points in $\mathbb R^d$, consider the closed balls with diameters induced by its edges. The graph is called a Tverberg graph if these closed balls intersect. A max-sum tree of a finite point set $X \subset \mathbb R^d$ is a tree with vertex set $X$ that maximizes the sum of Euclidean distances of its edges among all trees with vertex set $X$. Similarly, a max-sum matching of an even set $X \subset \mathbb R^d$ is a perfect matching of $X$ maximizing the sum of Euclidean distances between the matched points among all perfect matchings of $X$. We prove that a max-sum tree of any finite point set in $\mathbb R^d$ is a Tverberg graph, which generalizes a recent result of Abu-Affash et al., who established this claim in the plane. Additionally, we provide a new proof of a theorem by Bereg et al., which states that a max-sum matching of any even point set in the plane is a Tverberg graph. Moreover, we proved a slightly stronger version of this theorem.

Let $G_n$ be a random geometric graph with vertex set $[n]$ based on $n$ i.i.d.\ random vectors $X_1,\ldots,X_n$ drawn from an unknown density $f$ on $\R^d$. An edge $(i,j)$ is present when $\|X_i -X_j\| \le r_n$, for a given threshold $r_n$ possibly depending upon $n$, where $\| \cdot \|$ denotes Euclidean distance. We study the problem of estimating the dimension $d$ of the underlying space when we have access to the adjacency matrix of the graph but do not know $r_n$ or the vectors $X_i$. The main result of the paper is that there exists an estimator of $d$ that converges to $d$ in probability as $n \to \infty$ for all densities with $\int f^5 < \infty$ whenever $n^{3/2} r_n^d \to \infty$ and $r_n = o(1)$. The conditions allow very sparse graphs since when $n^{3/2} r_n^d \to 0$, the graph contains isolated edges only, with high probability. We also show that, without any condition on the density, a consistent estimator of $d$ exists when $n r_n^d \to \infty$ and $r_n = o(1)$.

北京阿比特科技有限公司