亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Vision-Language Pre-training has demonstrated its remarkable zero-shot recognition ability and potential to learn generalizable visual representations from language supervision. Taking a step ahead, language-supervised semantic segmentation enables spatial localization of textual inputs by learning pixel grouping solely from image-text pairs. Nevertheless, the state-of-the-art suffers from clear semantic gaps between visual and textual modality: plenty of visual concepts appeared in images are missing in their paired captions. Such semantic misalignment circulates in pre-training, leading to inferior zero-shot performance in dense predictions due to insufficient visual concepts captured in textual representations. To close such semantic gap, we propose Concept Curation (CoCu), a pipeline that leverages CLIP to compensate for the missing semantics. For each image-text pair, we establish a concept archive that maintains potential visually-matched concepts with our proposed vision-driven expansion and text-to-vision-guided ranking. Relevant concepts can thus be identified via cluster-guided sampling and fed into pre-training, thereby bridging the gap between visual and textual semantics. Extensive experiments over a broad suite of 8 segmentation benchmarks show that CoCu achieves superb zero-shot transfer performance and greatly boosts language-supervised segmentation baseline by a large margin, suggesting the value of bridging semantic gap in pre-training data.

相關內容

語義鴻溝是指通過不同的語言表征,如語言或符號,對一個對象的兩種描述之間的差異。

Low-rank adaptation (LoRA) is an efficient strategy for adapting latent diffusion models (LDMs) on a training dataset to generate specific objects by minimizing the adaptation loss. However, adapted LDMs via LoRA are vulnerable to membership inference (MI) attacks that can judge whether a particular data point belongs to private training datasets, thus facing severe risks of privacy leakage. To defend against MI attacks, we make the first effort to propose a straightforward solution: privacy-preserving LoRA (PrivateLoRA). PrivateLoRA is formulated as a min-max optimization problem where a proxy attack model is trained by maximizing its MI gain while the LDM is adapted by minimizing the sum of the adaptation loss and the proxy attack model's MI gain. However, we empirically disclose that PrivateLoRA has the issue of unstable optimization due to the large fluctuation of the gradient scale which impedes adaptation. To mitigate this issue, we propose Stable PrivateLoRA that adapts the LDM by minimizing the ratio of the adaptation loss to the MI gain, which implicitly rescales the gradient and thus stabilizes the optimization. Our comprehensive empirical results corroborate that adapted LDMs via Stable PrivateLoRA can effectively defend against MI attacks while generating high-quality images. Our code is available at //github.com/WilliamLUO0/StablePrivateLoRA.

Negative sampling stands as a pivotal technique in dense retrieval, essential for training effective retrieval models and significantly impacting retrieval performance. While existing negative sampling methods have made commendable progress by leveraging hard negatives, a comprehensive guiding principle for constructing negative candidates and designing negative sampling distributions is still lacking. To bridge this gap, we embark on a theoretical analysis of negative sampling in dense retrieval. This exploration culminates in the unveiling of the quasi-triangular principle, a novel framework that elucidates the triangular-like interplay between query, positive document, and negative document. Fueled by this guiding principle, we introduce TriSampler, a straightforward yet highly effective negative sampling method. The keypoint of TriSampler lies in its ability to selectively sample more informative negatives within a prescribed constrained region. Experimental evaluation show that TriSampler consistently attains superior retrieval performance across a diverse of representative retrieval models.

5G New Radio (NR) has stringent demands on both performance and complexity for the design of low-density parity-check (LDPC) decoding algorithms and corresponding VLSI implementations. Furthermore, decoders must fully support the wide range of all 5G NR blocklengths and code rates, which is a significant challenge. In this paper, we present a high-performance and low-complexity LDPC decoder, tailor-made to fulfill the 5G requirements. First, to close the gap between belief propagation (BP) decoding and its approximations in hardware, we propose an extension of adjusted min-sum decoding, called generalized adjusted min-sum (GA-MS) decoding. This decoding algorithm flexibly truncates the incoming messages at the check node level and carefully approximates the non-linear functions of BP decoding to balance the error-rate and hardware complexity. Numerical results demonstrate that the proposed fixed-point GAMS has only a minor gap of 0.1 dB compared to floating-point BP under various scenarios of 5G standard specifications. Secondly, we present a fully reconfigurable 5G NR LDPC decoder implementation based on GA-MS decoding. Given that memory occupies a substantial portion of the decoder area, we adopt multiple data compression and approximation techniques to reduce 42.2% of the memory overhead. The corresponding 28nm FD-SOI ASIC decoder has a core area of 1.823 mm2 and operates at 895 MHz. It is compatible with all 5G NR LDPC codes and achieves a peak throughput of 24.42 Gbps and a maximum area efficiency of 13.40 Gbps/mm2 at 4 decoding iterations.

Large monolithic generative models trained on massive amounts of data have become an increasingly dominant approach in AI research. In this paper, we argue that we should instead construct large generative systems by composing smaller generative models together. We show how such a compositional generative approach enables us to learn distributions in a more data-efficient manner, enabling generalization to parts of the data distribution unseen at training time. We further show how this enables us to program and construct new generative models for tasks completely unseen at training. Finally, we show that in many cases, we can discover separate compositional components from data.

We study the use of linear regression for multiclass classification in the over-parametrized regime where some of the training data is mislabeled. In such scenarios it is necessary to add an explicit regularization term, $\lambda f(w)$, for some convex function $f(\cdot)$, to avoid overfitting the mislabeled data. In our analysis, we assume that the data is sampled from a Gaussian Mixture Model with equal class sizes, and that a proportion $c$ of the training labels is corrupted for each class. Under these assumptions, we prove that the best classification performance is achieved when $f(\cdot) = \|\cdot\|^2_2$ and $\lambda \to \infty$. We then proceed to analyze the classification errors for $f(\cdot) = \|\cdot\|_1$ and $f(\cdot) = \|\cdot\|_\infty$ in the large $\lambda$ regime and notice that it is often possible to find sparse and one-bit solutions, respectively, that perform almost as well as the one corresponding to $f(\cdot) = \|\cdot\|_2^2$.

The work of neural retrieval so far focuses on ranking short texts and is challenged with long documents. There are many cases where the users want to find a relevant passage within a long document from a huge corpus, e.g. Wikipedia articles, research papers, etc. We propose and name this task \emph{Document-Aware Passage Retrieval} (DAPR). While analyzing the errors of the State-of-The-Art (SoTA) passage retrievers, we find the major errors (53.5\%) are due to missing document context. This drives us to build a benchmark for this task including multiple datasets from heterogeneous domains. In the experiments, we extend the SoTA passage retrievers with document context via (1) hybrid retrieval with BM25 and (2) contextualized passage representations, which inform the passage representation with document context. We find despite that hybrid retrieval performs the strongest on the mixture of the easy and the hard queries, it completely fails on the hard queries that require document-context understanding. On the other hand, contextualized passage representations (e.g. prepending document titles) achieve good improvement on these hard queries, but overall they also perform rather poorly. Our created benchmark enables future research on developing and comparing retrieval systems for the new task. The code and the data are available at //github.com/UKPLab/arxiv2023-dapr.

Crowdsourced delivery platforms face complex scheduling challenges to match couriers and customer orders. We consider two types of crowdsourced couriers, namely, committed and occasional couriers, each with different compensation schemes. Crowdsourced delivery platforms usually schedule committed courier shifts based on predicted demand. Therefore, platforms may devise an offline schedule for committed couriers before the planning period. However, due to the unpredictability of demand, there are instances where it becomes necessary to make online adjustments to the offline schedule. In this study, we focus on the problem of dynamically adjusting the offline schedule through shift extensions for committed couriers. This problem is modeled as a sequential decision process. The objective is to maximize platform profit by determining the shift extensions of couriers and the assignments of requests to couriers. To solve the model, a Deep Q-Network (DQN) learning approach is developed. Comparing this model with the baseline policy where no extensions are allowed demonstrates the benefits that platforms can gain from allowing shift extensions in terms of reward, reduced lost order costs, and lost requests. Additionally, sensitivity analysis showed that the total extension compensation increases in a nonlinear manner with the arrival rate of requests, and in a linear manner with the arrival rate of occasional couriers. On the compensation sensitivity, the results showed that the normal scenario exhibited the highest average number of shift extensions and, consequently, the fewest average number of lost requests. These findings serve as evidence of the successful learning of such dynamics by the DQN algorithm.

The human-like automatic deductive reasoning has always been one of the most challenging open problems in the interdiscipline of mathematics and artificial intelligence. This paper is the third in a series of our works. We built a neural-symbolic system, called FGeoDRL, to automatically perform human-like geometric deductive reasoning. The neural part is an AI agent based on reinforcement learning, capable of autonomously learning problem-solving methods from the feedback of a formalized environment, without the need for human supervision. It leverages a pre-trained natural language model to establish a policy network for theorem selection and employ Monte Carlo Tree Search for heuristic exploration. The symbolic part is a reinforcement learning environment based on geometry formalization theory and FormalGeo, which models GPS as a Markov Decision Process. In this formal symbolic system, the known conditions and objectives of the problem form the state space, while the set of theorems forms the action space. Leveraging FGeoDRL, we have achieved readable and verifiable automated solutions to geometric problems. Experiments conducted on the formalgeo7k dataset have achieved a problem-solving success rate of 86.40%. The project is available at //github.com/PersonNoName/FGeoDRL.

Commercial-off-the-shelf (COTS) components are often preferred over custom Integrated Circuits (ICs) to achieve reduced system development time and cost, easy adoption of new technologies, and replaceability. Unfortunately, the integration of COTS components introduces serious security concerns. None of the entities in the COTS IC supply chain are trusted from a consumer's perspective, leading to a ''zero trust'' threat model. Any of these entities could introduce hidden malicious circuits or hardware Trojans within the component, allowing an attacker in the field to extract secret information (e.g., cryptographic keys) or cause a functional failure. Existing solutions to counter hardware Trojans are inapplicable in such a zero-trust scenario as they assume either the design house or the foundry to be trusted and consider the design to be available for either analysis or modification. In this work, we have proposed a software-oriented countermeasure to ensure the confidentiality of secret assets against hardware Trojans that can be seamlessly integrated in existing COTS microprocessors. The proposed solution does not require any supply chain entity to be trusted and does not require analysis or modification of the IC design. To protect secret assets in an untrusted microprocessor, the proposed method leverages the concept of residue number coding (RNC) to transform the software functions operating on the asset to be fully homomorphic. We have implemented the proposed solution to protect the secret key within the Advanced Encryption Standard (AES) program and presented a detailed security analysis. We also have developed a plugin for the LLVM compiler toolchain that automatically integrates the solution in AES. Finally, we compare the execution time overhead of the operations in the RNC-based technique with comparable homomorphic solutions and demonstrate significant improvement.

Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, robust principal component analysis, phase synchronization, and joint alignment. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.

北京阿比特科技有限公司