亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Combining offline and online reinforcement learning (RL) is crucial for efficient and safe learning. However, previous approaches treat offline and online learning as separate procedures, resulting in redundant designs and limited performance. We ask: Can we achieve straightforward yet effective offline and online learning without introducing extra conservatism or regularization? In this study, we propose Uni-o4, which utilizes an on-policy objective for both offline and online learning. Owning to the alignment of objectives in two phases, the RL agent can transfer between offline and online learning seamlessly. This property enhances the flexibility of the learning paradigm, allowing for arbitrary combinations of pretraining, fine-tuning, offline, and online learning. In the offline phase, specifically, Uni-o4 leverages diverse ensemble policies to address the mismatch issues between the estimated behavior policy and the offline dataset. Through a simple offline policy evaluation (OPE) approach, Uni-o4 can achieve multi-step policy improvement safely. We demonstrate that by employing the method above, the fusion of these two paradigms can yield superior offline initialization as well as stable and rapid online fine-tuning capabilities. Through real-world robot tasks, we highlight the benefits of this paradigm for rapid deployment in challenging, previously unseen real-world environments. Additionally, through comprehensive evaluations using numerous simulated benchmarks, we substantiate that our method achieves state-of-the-art performance in both offline and offline-to-online fine-tuning learning. Our website: //lei-kun.github.io/uni-o4/ .

相關內容

Representation learning on text-attributed graphs (TAGs) has become a critical research problem in recent years. A typical example of a TAG is a paper citation graph, where the text of each paper serves as node attributes. Initial graph neural network (GNN) pipelines handled these text attributes by transforming them into shallow or hand-crafted features, such as skip-gram or bag-of-words features. Recent efforts have focused on enhancing these pipelines with language models (LMs), which typically demand intricate designs and substantial computational resources. With the advent of powerful large language models (LLMs) such as GPT or Llama2, which demonstrate an ability to reason and to utilize general knowledge, there is a growing need for techniques which combine the textual modelling abilities of LLMs with the structural learning capabilities of GNNs. Hence, in this work, we focus on leveraging LLMs to capture textual information as features, which can be used to boost GNN performance on downstream tasks. A key innovation is our use of explanations as features: we prompt an LLM to perform zero-shot classification, request textual explanations for its decision-making process, and design an LLM-to-LM interpreter to translate these explanations into informative features for downstream GNNs. Our experiments demonstrate that our method achieves state-of-the-art results on well-established TAG datasets, including Cora, PubMed, ogbn-arxiv, as well as our newly introduced dataset, tape-arxiv23. Furthermore, our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv. Lastly, we believe the versatility of the proposed method extends beyond TAGs and holds the potential to enhance other tasks involving graph-text data. Our codes and datasets are available at: //github.com/XiaoxinHe/TAPE.

Federated learning is a promising framework to train neural networks with widely distributed data. However, performance degrades heavily with heterogeneously distributed data. Recent work has shown this is due to the final layer of the network being most prone to local bias, some finding success freezing the final layer as an orthogonal classifier. We investigate the training dynamics of the classifier by applying SVD to the weights motivated by the observation that freezing weights results in constant singular values. We find that there are differences when training in IID and non-IID settings. Based on this finding, we introduce two regularization terms for local training to continuously emulate IID settings: (1) variance in the dimension-wise probability distribution of the classifier and (2) hyperspherical uniformity of representations of the encoder. These regularizations promote local models to act as if it were in an IID setting regardless of the local data distribution, thus offsetting proneness to bias while being flexible to the data. On extensive experiments in both label-shift and feature-shift settings, we verify that our method achieves highest performance by a large margin especially in highly non-IID cases in addition to being scalable to larger models and datasets.

Deep imitation learning is promising for robot manipulation because it only requires demonstration samples. In this study, deep imitation learning is applied to tasks that require force feedback. However, existing demonstration methods have deficiencies; bilateral teleoperation requires a complex control scheme and is expensive, and kinesthetic teaching suffers from visual distractions from human intervention. This research proposes a new master-to-robot (M2R) policy transfer system that does not require robots for teaching force feedback-based manipulation tasks. The human directly demonstrates a task using a controller. This controller resembles the kinematic parameters of the robot arm and uses the same end-effector with force/torque (F/T) sensors to measure the force feedback. Using this controller, the operator can feel force feedback without a bilateral system. The proposed method can overcome domain gaps between the master and robot using gaze-based imitation learning and a simple calibration method. Furthermore, a Transformer is applied to infer policy from F/T sensory input. The proposed system was evaluated on a bottle-cap-opening task that requires force feedback.

Multi-agent reinforcement learning is an area of rapid advancement in artificial intelligence and machine learning. One of the important questions to be answered is how to conduct credit assignment in a multi-agent system. There have been many schemes designed to conduct credit assignment by multi-agent reinforcement learning algorithms. Although these credit assignment schemes have been proved useful in improving the performance of multi-agent reinforcement learning, most of them are designed heuristically without a rigorous theoretic basis and therefore infeasible to understand how agents cooperate. In this thesis, we aim at investigating the foundation of credit assignment in multi-agent reinforcement learning via cooperative game theory. We first extend a game model called convex game and a payoff distribution scheme called Shapley value in cooperative game theory to Markov decision process, named as Markov convex game and Markov Shapley value respectively. We represent a global reward game as a Markov convex game under the grand coalition. As a result, Markov Shapley value can be reasonably used as a credit assignment scheme in the global reward game. Markov Shapley value possesses the following virtues: (i) efficiency; (ii) identifiability of dummy agents; (iii) reflecting the contribution and (iv) symmetry, which form the fair credit assignment. Based on Markov Shapley value, we propose three multi-agent reinforcement learning algorithms called SHAQ, SQDDPG and SMFPPO. Furthermore, we extend Markov convex game to partial observability to deal with the partially observable problems, named as partially observable Markov convex game. In application, we evaluate SQDDPG and SMFPPO on the real-world problem in energy networks.

Multi-agent reinforcement learning (MARL) is a widely used Artificial Intelligence (AI) technique. However, current studies and applications need to address its scalability, non-stationarity, and trustworthiness. This paper aims to review methods and applications and point out research trends and visionary prospects for the next decade. First, this paper summarizes the basic methods and application scenarios of MARL. Second, this paper outlines the corresponding research methods and their limitations on safety, robustness, generalization, and ethical constraints that need to be addressed in the practical applications of MARL. In particular, we believe that trustworthy MARL will become a hot research topic in the next decade. In addition, we suggest that considering human interaction is essential for the practical application of MARL in various societies. Therefore, this paper also analyzes the challenges while MARL is applied to human-machine interaction.

Deep learning has been the mainstream technique in natural language processing (NLP) area. However, the techniques require many labeled data and are less generalizable across domains. Meta-learning is an arising field in machine learning studying approaches to learn better learning algorithms. Approaches aim at improving algorithms in various aspects, including data efficiency and generalizability. Efficacy of approaches has been shown in many NLP tasks, but there is no systematic survey of these approaches in NLP, which hinders more researchers from joining the field. Our goal with this survey paper is to offer researchers pointers to relevant meta-learning works in NLP and attract more attention from the NLP community to drive future innovation. This paper first introduces the general concepts of meta-learning and the common approaches. Then we summarize task construction settings and application of meta-learning for various NLP problems and review the development of meta-learning in NLP community.

The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. In this work, we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph neural networks. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.

Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.

Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.

State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.

北京阿比特科技有限公司