亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Homomorphic encryption (HE) has found extensive utilization in federated learning (FL) systems, capitalizing on its dual advantages: (i) ensuring the confidentiality of shared models contributed by participating entities, and (ii) enabling algebraic operations directly on ciphertexts representing encrypted models. Particularly, the approximate fully homomorphic encryption (FHE) scheme, known as CKKS, has emerged as the de facto encryption scheme, notably supporting decimal numbers. While recent research predominantly focuses on enhancing CKKS's encryption rate and evaluation speed in the context of FL, the search operation has been relatively disregarded due to the tendency of some applications to discard intermediate encrypted models. Yet, emerging studies emphasize the importance of managing and searching intermediate models for specific applications like large-scale scientific computing, necessitating robust data provenance and auditing support. To address this, our paper introduces an innovative approach that efficiently searches for a target encrypted value, incurring only a logarithmic number of network interactions. The proposed method capitalizes on CKKS's additive and multiplicative properties on encrypted models, propagating equality comparisons between values through a balanced binary tree structure to ultimately reach a single aggregate. A comprehensive analysis of the proposed algorithm underscores its potential to significantly broaden FL's applicability and impact.

相關內容

Chain-of-Thought (CoT) prompting in large language models (LLMs) has shown promising performance on mathematical reasoning tasks. Recently, Self-Consistency samples a diverse set of reasoning chains with different answers and chooses the answer by majority voting. Though effective, its performance cannot be further improved by sampling more reasoning chains. To address this problem, we propose to integrate backward reasoning into answer verification. We first mask a number in the question by ${\bf x}$. The LLM is then asked to predict the masked number with a candidate answer $A$ embedded in the template: ``If we know the answer to the above question is $\{A\}$, what is the value of unknown variable ${\bf x}$?'' The LLM is expected to predict the masked number successfully if the provided candidate answer is correct. To further improve performance, we propose FOBAR (FOrward-BAckward Reasoning) to combine forward and backward reasoning for verifying candidate answers. Experiments are performed on six standard mathematical data sets and three LLMs (text-davinci-003, GPT-3.5-Turbo, GPT-4). Results show that FOBAR achieves state-of-the-art performance. In particular, FOBAR outperforms Self-Consistency which uses forward reasoning alone, demonstrating that combining forward and forward reasoning is better. It also outperforms existing verification methods, verifying the effectiveness of using the simple template in backward reasoning and the proposed combination.

While reinforcement learning (RL) shows remarkable success in decision-making problems, it often requires a lot of interactions with the environment, and in sparse-reward environments, it is challenging to learn meaningful policies. Large Language Models (LLMs) can potentially provide valuable guidance to agents in learning policies, thereby enhancing the performance of RL algorithms in such environments. However, LLMs often encounter difficulties in understanding downstream tasks, which hinders their ability to optimally assist agents in these tasks. A common approach to mitigating this issue is to fine-tune the LLMs with task-related data, enabling them to offer useful guidance for RL agents. However, this approach encounters several difficulties, such as inaccessible model weights or the need for significant computational resources, making it impractical. In this work, we introduce RLAdapter, a framework that builds a better connection between RL algorithms and LLMs by incorporating an adapter model. Within the RLAdapter framework, fine-tuning a lightweight language model with information generated during the training process of RL agents significantly aids LLMs in adapting to downstream tasks, thereby providing better guidance for RL agents. We conducted experiments to evaluate RLAdapter in the Crafter environment, and the results show that RLAdapter surpasses the SOTA baselines. Furthermore, agents under our framework exhibit common-sense behaviors that are absent in baseline models.

Large discrete action spaces (LDAS) remain a central challenge in reinforcement learning. Existing solution approaches can handle unstructured LDAS with up to a few million actions. However, many real-world applications in logistics, production, and transportation systems have combinatorial action spaces, whose size grows well beyond millions of actions, even on small instances. Fortunately, such action spaces exhibit structure, e.g., equally spaced discrete resource units. With this work, we focus on handling structured LDAS (SLDAS) with sizes that cannot be handled by current benchmarks: we propose Dynamic Neighborhood Construction (DNC), a novel exploitation paradigm for SLDAS. We present a scalable neighborhood exploration heuristic that utilizes this paradigm and efficiently explores the discrete neighborhood around the continuous proxy action in structured action spaces with up to $10^{73}$ actions. We demonstrate the performance of our method by benchmarking it against three state-of-the-art approaches designed for large discrete action spaces across two distinct environments. Our results show that DNC matches or outperforms state-of-the-art approaches while being computationally more efficient. Furthermore, our method scales to action spaces that so far remained computationally intractable for existing methodologies.

Existing approaches defend against backdoor attacks in federated learning (FL) mainly through a) mitigating the impact of infected models, or b) excluding infected models. The former negatively impacts model accuracy, while the latter usually relies on globally clear boundaries between benign and infected model updates. However, model updates are easy to be mixed and scattered throughout in reality due to the diverse distributions of local data. This work focuses on excluding infected models in FL. Unlike previous perspectives from a global view, we propose Snowball, a novel anti-backdoor FL framework through bidirectional elections from an individual perspective inspired by one principle deduced by us and two principles in FL and deep learning. It is characterized by a) bottom-up election, where each candidate model update votes to several peer ones such that a few model updates are elected as selectees for aggregation; and b) top-down election, where selectees progressively enlarge themselves through picking up from the candidates. We compare Snowball with state-of-the-art defenses to backdoor attacks in FL on five real-world datasets, demonstrating its superior resistance to backdoor attacks and slight impact on the accuracy of the global model.

Recent advances in federated learning (FL) enable collaborative training of machine learning (ML) models from large-scale and widely dispersed clients while protecting their privacy. However, when different clients' datasets are heterogeneous, traditional FL mechanisms produce a global model that does not adequately represent the poorer clients with limited data resources, resulting in lower accuracy and higher bias on their local data. According to the Matthew effect, which describes how the advantaged gain more advantage and the disadvantaged lose more over time, deploying such a global model in client applications may worsen the resource disparity among the clients and harm the principles of social welfare and fairness. To mitigate the Matthew effect, we propose Egalitarian Fairness Federated Learning (EFFL), where egalitarian fairness refers to the global model learned from FL has: (1) equal accuracy among clients; (2) equal decision bias among clients. Besides achieving egalitarian fairness among the clients, EFFL also aims for performance optimality, minimizing the empirical risk loss and the bias for each client; both are essential for any ML model training, whether centralized or decentralized. We formulate EFFL as a constrained multi-constrained multi-objectives optimization (MCMOO) problem, with the decision bias and egalitarian fairness as constraints and the minimization of the empirical risk losses on all clients as multiple objectives to be optimized. We propose a gradient-based three-stage algorithm to obtain the Pareto optimal solutions within the constraint space. Extensive experiments demonstrate that EFFL outperforms other state-of-the-art FL algorithms in achieving a high-performance global model with enhanced egalitarian fairness among all clients.

Deep learning has bolstered gaze estimation techniques, but real-world deployment has been impeded by inadequate training datasets. This problem is exacerbated by both hardware-induced variations in eye images and inherent biological differences across the recorded participants, leading to both feature and pixel-level variance that hinders the generalizability of models trained on specific datasets. While synthetic datasets can be a solution, their creation is both time and resource-intensive. To address this problem, we present a framework called Light Eyes or "LEyes" which, unlike conventional photorealistic methods, only models key image features required for video-based eye tracking using simple light distributions. LEyes facilitates easy configuration for training neural networks across diverse gaze-estimation tasks. We demonstrate that models trained using LEyes are consistently on-par or outperform other state-of-the-art algorithms in terms of pupil and CR localization across well-known datasets. In addition, a LEyes trained model outperforms the industry standard eye tracker using significantly more cost-effective hardware. Going forward, we are confident that LEyes will revolutionize synthetic data generation for gaze estimation models, and lead to significant improvements of the next generation video-based eye trackers.

Accurate trajectory prediction is crucial for safe and efficient autonomous driving, but handling partial observations presents significant challenges. To address this, we propose a novel trajectory prediction framework called Partial Observations Prediction (POP) for congested urban road scenarios. The framework consists of two stages: self-supervised learning (SSL) and feature distillation. In SSL, a reconstruction branch reconstructs the hidden history of partial observations using a mask procedure and reconstruction head. The feature distillation stage transfers knowledge from a fully observed teacher model to a partially observed student model, improving prediction accuracy. POP achieves comparable results to top-performing methods in open-loop experiments and outperforms the baseline method in closed-loop simulations, including safety metrics. Qualitative results illustrate the superiority of POP in providing reasonable and safe trajectory predictions.

Bayesian personalized federated learning (BPFL) addresses challenges in existing personalized FL (PFL). BPFL aims to quantify the uncertainty and heterogeneity within and across clients towards uncertainty representations by addressing the statistical heterogeneity of client data. In PFL, some recent preliminary work proposes to decompose hidden neural representations into shared and local components and demonstrates interesting results. However, most of them do not address client uncertainty and heterogeneity in FL systems, while appropriately decoupling neural representations is challenging and often ad hoc. In this paper, we make the first attempt to introduce a general BPFL framework to decompose and jointly learn shared and personalized uncertainty representations on statistically heterogeneous client data over time. A Bayesian federated neural network BPFed instantiates BPFL by jointly learning cross-client shared uncertainty and client-specific personalized uncertainty over statistically heterogeneous and randomly participating clients. We further involve continual updating of prior distribution in BPFed to speed up the convergence and avoid catastrophic forgetting. Theoretical analysis and guarantees are provided in addition to the experimental evaluation of BPFed against the diversified baselines.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

北京阿比特科技有限公司