亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In 1977 John Tukey described how in exploratory data analysis, data analysts use tools, such as data visualizations, to separate their expectations from what they observe. In contrast to statistical theory, an underappreciated aspect of data analysis is that a data analyst must make decisions by comparing the observed data or output from a statistical tool to what the analyst previously expected from the data. However, there is little formal guidance for how to make these data analytic decisions as statistical theory generally omits a discussion of who is using these statistical methods. In this paper, we propose a model for the iterative process of data analysis based on the analyst's expectations, using what we refer to as expected and anomaly probabilistic outcome sets, and the concept of statistical information gain. Here, we extend the basic idea of comparing an analyst's expectations to what is observed in a data visualization to more general analytic situations. Our model posits that the analyst's goal is to increase the amount of information the analyst has relative to what the analyst already knows, through successive analytic iterations. We introduce two criteria--expected information gain and anomaly information gain--to provide guidance about analytic decision-making and ultimately to improve the practice of data analysis. Finally, we show how our framework can be used to characterize common situations in practical data analysis.

相關內容

Piecewise Polynomials (PPs) are utilized in several engineering disciplines, like trajectory planning, to approximate position profiles given in the form of a set of points. While the approximation target along with domain-specific requirements, like Ck -continuity, can be formulated as a system of equations and a result can be computed directly, such closed-form solutions posses limited flexibility with respect to polynomial degrees, polynomial bases or adding further domain-specific requirements. Sufficiently complex optimization goals soon call for the use of numerical methods, like gradient descent. Since gradient descent lies at the heart of training Artificial Neural Networks (ANNs), modern Machine Learning (ML) frameworks like TensorFlow come with a set of gradient-based optimizers potentially suitable for a wide range of optimization problems beyond the training task for ANNs. Our approach is to utilize the versatility of PP models and combine it with the potential of modern ML optimizers for the use in function approximation in 1D trajectory planning in the context of electronic cam design. We utilize available optimizers of the ML framework TensorFlow directly, outside of the scope of ANNs, to optimize model parameters of our PP model. In this paper, we show how an orthogonal polynomial basis contributes to improving approximation and continuity optimization performance. Utilizing Chebyshev polynomials of the first kind, we develop a novel regularization approach enabling clearly improved convergence behavior. We show that, using this regularization approach, Chebyshev basis performs better than power basis for all relevant optimizers in the combined approximation and continuity optimization setting and demonstrate usability of the presented approach within the electronic cam domain.

Despite their sophisticated capabilities, large language models (LLMs) encounter a major hurdle in effective assessment. This paper first revisits the prevalent evaluation method-multiple choice question answering (MCQA), which allows for straightforward accuracy measurement. Through a comprehensive evaluation of 24 models across 11 benchmarks, we highlight several potential drawbacks of MCQA, for instance, the inconsistency between the MCQA evaluation and the generation of open-ended responses in practical scenarios. In response, we introduce an RWQ-Elo rating system, engaging 24 LLMs such as GPT-4, GPT-3.5, Google-Gemini-Pro and LLaMA-1/-2, in a two-player competitive format, with GPT-4 serving as the judge. Each LLM receives an Elo rating thereafter. This system is designed to mirror real-world usage, and for this purpose, we have compiled a new benchmark called ``Real-world questions'' (RWQ), comprising 20,772 authentic user inquiries. Additionally, we thoroughly analyze the characteristics of our system and compare it with prior leaderboards like AlpacaEval and MT-Bench. Our analysis reveals the stability of our RWQ-Elo system, the feasibility of registering new models, and its potential to reshape LLM leaderboards.

In the realm of Business Process Management (BPM), process modeling plays a crucial role in translating complex process dynamics into comprehensible visual representations, facilitating the understanding, analysis, improvement, and automation of organizational processes. Traditional process modeling methods often require extensive expertise and can be time-consuming. This paper explores the integration of Large Language Models (LLMs) into process modeling to enhance flexibility, efficiency, and accessibility of process modeling for both expert and non-expert users. We propose a framework that leverages LLMs for the automated generation and iterative refinement of process models starting from textual descriptions. Our framework involves innovative prompting strategies for effective LLM utilization, along with a secure model generation protocol and an error-handling mechanism. Moreover, we instantiate a concrete system extending our framework. This system provides robust quality guarantees on the models generated and supports exporting them in standard modeling notations, such as the Business Process Modeling Notation (BPMN) and Petri nets. Preliminary results demonstrate the framework's ability to streamline process modeling tasks, underscoring the transformative potential of generative AI in the BPM field.

In the realm of personalization, integrating diverse information sources such as consumption signals and content-based representations is becoming increasingly critical to build state-of-the-art solutions. In this regard, two of the biggest trends in research around this subject are Graph Neural Networks (GNNs) and Foundation Models (FMs). While GNNs emerged as a popular solution in industry for powering personalization at scale, FMs have only recently caught attention for their promising performance in personalization tasks like ranking and retrieval. In this paper, we present a graph-based foundation modeling approach tailored to personalization. Central to this approach is a Heterogeneous GNN (HGNN) designed to capture multi-hop content and consumption relationships across a range of recommendable item types. To ensure the generality required from a Foundation Model, we employ a Large Language Model (LLM) text-based featurization of nodes that accommodates all item types, and construct the graph using co-interaction signals, which inherently transcend content specificity. To facilitate practical generalization, we further couple the HGNN with an adaptation mechanism based on a two-tower (2T) architecture, which also operates agnostically to content type. This multi-stage approach ensures high scalability; while the HGNN produces general purpose embeddings, the 2T component models in a continuous space the sheer size of user-item interaction data. Our comprehensive approach has been rigorously tested and proven effective in delivering recommendations across a diverse array of products within a real-world, industrial audio streaming platform.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.

Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司