Transformers have had tremendous impact for several sequence related tasks, largely due to their ability to retrieve from any part of the sequence via softmax based dot-product attention. This mechanism plays a crucial role in Transformer's performance. We analyze the gradients backpropagated through the softmax operation in the attention mechanism and observe that these gradients can often be small. This poor gradient signal backpropagation can lead to inefficient learning of parameters preceeding the attention operations. To this end, we introduce a new attention mechanism called LASER, which we analytically show to admit a larger gradient signal. We show that LASER Attention can be implemented by making small modifications to existing attention implementations. We conduct experiments on autoregressive large language models (LLMs) with upto 2.2 billion parameters where we show upto 3.38% and an average of ~1% improvement over standard attention on downstream evaluations. Using LASER gives the following relative improvements in generalization performance across a variety of tasks (vision, text and speech): 4.67% accuracy in Vision Transformer (ViT) on Imagenet, 2.25% error rate in Conformer on the Librispeech speech-to-text and 0.93% fraction of incorrect predictions in BERT with 2.2 billion parameters.
Current discriminative depth estimation methods often produce blurry artifacts, while generative approaches suffer from slow sampling due to curvatures in the noise-to-depth transport. Our method addresses these challenges by framing depth estimation as a direct transport between image and depth distributions. We are the first to explore flow matching in this field, and we demonstrate that its interpolation trajectories enhance both training and sampling efficiency while preserving high performance. While generative models typically require extensive training data, we mitigate this dependency by integrating external knowledge from a pre-trained image diffusion model, enabling effective transfer even across differing objectives. To further boost our model performance, we employ synthetic data and utilize image-depth pairs generated by a discriminative model on an in-the-wild image dataset. As a generative model, our model can reliably estimate depth confidence, which provides an additional advantage. Our approach achieves competitive zero-shot performance on standard benchmarks of complex natural scenes while improving sampling efficiency and only requiring minimal synthetic data for training.
Despite the widespread use of LLMs due to their superior performance in various tasks, their high computational costs often lead potential users to opt for the pretraining-finetuning pipeline. However, biases prevalent in manually constructed datasets can introduce spurious correlations between tokens and labels, creating so-called shortcuts and hindering the generalizability of fine-tuned models. Existing debiasing methods often rely on prior knowledge of specific dataset biases, which is challenging to acquire a priori. We propose RAZOR (Rewriting And Zero-bias Optimization Refinement), a novel, unsupervised, and data-focused debiasing approach based on text rewriting for shortcut mitigation. RAZOR leverages LLMs to iteratively rewrite potentially biased text segments by replacing them with heuristically selected alternatives in a shortcut space defined by token statistics and positional information. This process aims to align surface-level text features more closely with diverse label distributions, thereby promoting the learning of genuine linguistic patterns. Compared with unsupervised SoTA models, RAZOR improves by 3.5% on the FEVER and 6.5% on MNLI and SNLI datasets according to the F1 score. Additionally, RAZOR effectively mitigates specific known biases, reducing bias-related terms by x2 without requiring prior bias information, a result that is on par with SoTA models that leverage prior information. Our work prioritizes data manipulation over architectural modifications, emphasizing the pivotal role of data quality in enhancing model performance and fairness. This research contributes to developing more robust evaluation benchmarks for debiasing methods by incorporating metrics for bias reduction and overall model efficacy.
The effective training and evaluation of retrieval systems require a substantial amount of relevance judgments, which are traditionally collected from human assessors -- a process that is both costly and time-consuming. Large Language Models (LLMs) have shown promise in generating relevance labels for search tasks, offering a potential alternative to manual assessments. Current approaches often rely on a single LLM, such as GPT-4, which, despite being effective, are expensive and prone to intra-model biases that can favour systems leveraging similar models. In this work, we introduce JudgeBlender, a framework that employs smaller, open-source models to provide relevance judgments by combining evaluations across multiple LLMs (LLMBlender) or multiple prompts (PromptBlender). By leveraging the LLMJudge benchmark [18], we compare JudgeBlender with state-of-the-art methods and the top performers in the LLMJudge challenge. Our results show that JudgeBlender achieves competitive performance, demonstrating that very large models are often unnecessary for reliable relevance assessments.
Recently, Gaussian splatting has emerged as a strong alternative to NeRF, demonstrating impressive 3D modeling capabilities while requiring only a fraction of the training and rendering time. In this paper, we show how the standard Gaussian splatting framework can be adapted for remote sensing, retaining its high efficiency. This enables us to achieve state-of-the-art performance in just a few minutes, compared to the day-long optimization required by the best-performing NeRF-based Earth observation methods. The proposed framework incorporates remote-sensing improvements from EO-NeRF, such as radiometric correction and shadow modeling, while introducing novel components, including sparsity, view consistency, and opacity regularizations.
Hospital readmission prediction is critical for clinical decision support, aiming to identify patients at risk of returning within 30 days post-discharge. High readmission rates often indicate inadequate treatment or post-discharge care, making effective prediction models essential for optimizing resources and improving patient outcomes. We propose PT, a Transformer-based model that integrates Electronic Health Records (EHR), medical images, and clinical notes to predict 30-day all-cause hospital readmissions. PT extracts features from raw data and uses specialized Transformer blocks tailored to the data's complexity. Enhanced with Random Forest for EHR feature selection and test-time ensemble techniques, PT achieves superior accuracy, scalability, and robustness. It performs well even when temporal information is missing. Our main contributions are: (1)Simplicity: A powerful and efficient baseline model outperforming existing ones in prediction accuracy; (2)Scalability: Flexible handling of various features from different modalities, achieving high performance with just clinical notes or EHR data; (3)Robustness: Strong predictive performance even with missing or unclear temporal data.
We study a Bayesian persuasion problem with externalities. In this model, a principal sends signals to inform multiple agents about the state of the world. Simultaneously, due to the existence of externalities in the agents' utilities, the principal also acts as a correlation device to correlate the agents' actions. We consider the setting where the agents are categorized into a small number of types. Agents of the same type share identical utility functions and are treated equitably in the utility functions of both other agents and the principal. We study the problem of computing optimal signaling strategies for the principal, under three different types of signaling channels: public, private, and semi-private. Our results include revelation-principle-style characterizations of optimal signaling strategies, linear programming formulations, and analysis of in/tractability of the optimization problems. It is demonstrated that when the maximum number of deviating agents is bounded by a constant, our LP-based formulations compute optimal signaling strategies in polynomial time. Otherwise, the problems are NP-hard.
Reasoning, as an essential ability for complex problem-solving, can provide back-end support for various real-world applications, such as medical diagnosis, negotiation, etc. This paper provides a comprehensive survey of cutting-edge research on reasoning with language model prompting. We introduce research works with comparisons and summaries and provide systematic resources to help beginners. We also discuss the potential reasons for emerging such reasoning abilities and highlight future research directions. Resources are available at //github.com/zjunlp/Prompt4ReasoningPapers (updated periodically).
Convolutional neural networks have made significant progresses in edge detection by progressively exploring the context and semantic features. However, local details are gradually suppressed with the enlarging of receptive fields. Recently, vision transformer has shown excellent capability in capturing long-range dependencies. Inspired by this, we propose a novel transformer-based edge detector, \emph{Edge Detection TransformER (EDTER)}, to extract clear and crisp object boundaries and meaningful edges by exploiting the full image context information and detailed local cues simultaneously. EDTER works in two stages. In Stage I, a global transformer encoder is used to capture long-range global context on coarse-grained image patches. Then in Stage II, a local transformer encoder works on fine-grained patches to excavate the short-range local cues. Each transformer encoder is followed by an elaborately designed Bi-directional Multi-Level Aggregation decoder to achieve high-resolution features. Finally, the global context and local cues are combined by a Feature Fusion Module and fed into a decision head for edge prediction. Extensive experiments on BSDS500, NYUDv2, and Multicue demonstrate the superiority of EDTER in comparison with state-of-the-arts.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.