Off-Policy Evaluation (OPE) aims to assess the effectiveness of counterfactual policies using only offline logged data and is often used to identify the top-k promising policies for deployment in online A/B tests. Existing evaluation metrics for OPE estimators primarily focus on the "accuracy" of OPE or that of downstream policy selection, neglecting risk-return tradeoff in the subsequent online policy deployment. To address this issue, we draw inspiration from portfolio evaluation in finance and develop a new metric, called SharpeRatio@k, which measures the risk-return tradeoff of policy portfolios formed by an OPE estimator under varying online evaluation budgets (k). We validate our metric in two example scenarios, demonstrating its ability to effectively distinguish between low-risk and high-risk estimators and to accurately identify the most efficient estimator. This efficient estimator is characterized by its capability to form the most advantageous policy portfolios, maximizing returns while minimizing risks during online deployment, a nuance that existing metrics typically overlook. To facilitate a quick, accurate, and consistent evaluation of OPE via SharpeRatio@k, we have also integrated this metric into an open-source software, SCOPE-RL. Employing SharpeRatio@k and SCOPE-RL, we conduct comprehensive benchmarking experiments on various estimators and RL tasks, focusing on their risk-return tradeoff. These experiments offer several interesting directions and suggestions for future OPE research.
Memory bandwidth is known to be a performance bottleneck for FPGA accelerators, especially when they deal with large multi-dimensional data-sets. A large body of work focuses on reducing of off-chip transfers, but few authors try to improve the efficiency of transfers. This paper addresses the later issue by proposing (i) a compiler-based approach to accelerator's data layout to maximize contiguous access to off-chip memory, and (ii) data packing and runtime compression techniques that take advantage of this layout to further improve memory performance. We show that our approach can decrease the I/O cycles up to $7\times$ compared to un-optimized memory accesses.
Knowledge Organization (KO) and Knowledge Representation (KR) have been the two mainstream methodologies of knowledge modelling in the Information Science community and the Artificial Intelligence community, respectively. The facet-analytical tradition of KO has developed an exhaustive set of guiding canons for ensuring quality in organising and managing knowledge but has remained limited in terms of technology-driven activities to expand its scope and services beyond the bibliographic universe of knowledge. KR, on the other hand, boasts of a robust ecosystem of technologies and technology-driven service design which can be tailored to model any entity or scale to any service in the entire universe of knowledge. This paper elucidates both the facet-analytical KO and KR methodologies in detail and provides a functional mapping between them. Out of the mapping, the paper proposes an integrated KR-enriched KO methodology with all the standard components of a KO methodology plus the advanced technologies provided by the KR approach. The practical benefits of the methodological integration has been exemplified through the flagship application of the Digital University at the University of Trento, Italy.
Simulation to reality (sim2real) transfer from a dynamics and controls perspective usually involves re-tuning or adapting the designed algorithms to suit real-world operating conditions, which often violates the performance guarantees established originally. This work presents a generalizable framework for achieving reliable sim2real transfer of autonomy-oriented control systems using multi-model multi-objective robust optimal control synthesis, which lends well to uncertainty handling and disturbance rejection with theoretical guarantees. Particularly, this work is centered around an actuation-redundant scaled autonomous vehicle called Nigel, with independent all-wheel drive and independent all-wheel steering architecture, whose enhanced configuration space bodes well for robust control applications. To this end, we present a systematic study on the complete mechatronic design, dynamics modeling, parameter identification, and robust stabilizing as well as steady-state tracking control of Nigel using the proposed framework, with experimental validation.
Recent trends like the Internet of Things (IoT) suggest a vision of dense and multi-scale deployments of computing devices in nearly all kinds of environments. A prominent engineering challenge revolves around programming the collective adaptive behaviour of such computational ecosystems. This requires abstractions able to capture concepts like ensembles (dynamic groups of cooperating devices) and collective tasks (joint activities carried out by ensembles). In this work, we consider collections of devices interacting with neighbours and that execute in nearly-synchronised sense-compute-interact rounds, where the computation is given by a single program mapping sensing values and incoming messages to output and outcoming messages. To support programming whole computational collectives, we propose the abstraction of a distributed collective process, which can be used to define at once the ensemble formation logic and its collective task. We formalise the abstraction in the eXchange Calculus (XC), a core functional language based on neighbouring values (maps from neighbours to values) where state and interaction is handled through a single primitive, exchange, and provide a corresponding implementation in the FCPP language. Then, we exercise distributed collective processes using two case studies: multi-hop message propagation and distributed monitoring of spatial properties. Finally, we discuss the features of the abstraction and its suitability for different kinds of distributed computing applications.
Multi-Access Edge Computing (MEC) emerged as a viable computing allocation method that facilitates offloading tasks to edge servers for efficient processing. The integration of MEC with 5G, referred to as 5G-MEC, provides real-time processing and data-driven decision-making in close proximity to the user. The 5G-MEC has gained significant recognition in task offloading as an essential tool for applications that require low delay. Nevertheless, few studies consider the dropped task ratio metric. Disregarding this metric might possibly undermine system efficiency. In this paper, the dropped task ratio and delay has been minimized in a realistic 5G-MEC task offloading scenario implemented in NS3. We utilize Mixed Integer Linear Programming (MILP) and Genetic Algorithm (GA) to optimize delay and dropped task ratio. We examined the effect of the number of tasks and users on the dropped task ratio and delay. Compared to two traditional offloading schemes, First Come First Serve (FCFS) and Shortest Task First (STF), our proposed method effectively works in 5G-MEC task offloading scenario. For MILP, the dropped task ratio and delay has been minimized by 20% and 2ms compared to GA.
Self-Sovereign Identity (SSI), as a new and promising identity management paradigm, needs mechanisms that can ease a gradual transition of existing services and developers towards it. Systems that bridge the gap between SSI and established identity and access management have been proposed but still lack adoption. We argue that they are all some combination of too complex, locked into specific ecosystems, have no source code available, or are not sufficiently documented. We propose a comparatively simple system that enables SSI-based sign-ins for services that support the widespread OpenID Connect or OAuth 2.0 protocols. Its handling of claims is highly configurable through a single policy and designed for cross-device authentication flows involving a smartphone identity wallet. For external interfaces, we solely rely on open standards, such as the recent OpenID for Verifiable Credentials standards. We provide our implementation as open-source software intended for prototyping and as a reference. Also, we contribute a detailed technical discussion of our particular sign-in flow. To prove its feasibility, we have successfully tested it with existing software and realistic hardware.
Recent strides in the field of neural computation has seen the adoption of Winner Take All (WTA) circuits to facilitate the unification of hierarchical Bayesian inference and spiking neural networks as a neurobiologically plausible model of information processing. Current research commonly validates the performance of these networks via classification tasks, particularly of the MNIST dataset. However, researchers have not yet reached consensus about how best to translate the stochastic responses from these networks into discrete decisions, a process known as population decoding. Despite being an often underexamined part of SNNs, in this work we show that population decoding has a significanct impact on the classification performance of WTA networks. For this purpose, we apply a WTA network to the problem of cancer subtype diagnosis from multi omic data, using datasets from The Cancer Genome Atlas (TCGA). In doing so we utilise a novel implementation of gene similarity networks, a feature encoding technique based on Kohoens self organising map algorithm. We further show that the impact of selecting certain population decoding methods is amplified when facing imbalanced datasets.
Spiking Neural Networks (SNNs) that operate in an event-driven manner and employ binary spike representation have recently emerged as promising candidates for energy-efficient computing. However, a cost bottleneck arises in obtaining high-performance SNNs: training a SNN model requires a large number of time steps in addition to the usual learning iterations, hence this limits their energy efficiency. This paper proposes a general training framework that enhances feature learning and activation efficiency within a limited time step, providing a new solution for more energy-efficient SNNs. Our framework allows SNN neurons to learn robust spike feature from different receptive fields and update neuron states by utilizing both current stimuli and recurrence information transmitted from other neurons. This setting continuously complements information within a single time step. Additionally, we propose a projection function to merge these two stimuli to smoothly optimize neuron weights (spike firing threshold and activation). We evaluate the proposal for both convolution and recurrent models. Our experimental results indicate state-of-the-art visual classification tasks, including CIFAR10, CIFAR100, and TinyImageNet.Our framework achieves 72.41% and 72.31% top-1 accuracy with only 1 time step on CIFAR100 for CNNs and RNNs, respectively. Our method reduces 10x and 3x joule energy than a standard ANN and SNN, respectively, on CIFAR10, without additional time steps.
The military is investigating methods to improve communication and agility in its multi-domain operations (MDO). Nascent popularity of Internet of Things (IoT) has gained traction in public and government domains. Its usage in MDO may revolutionize future battlefields and may enable strategic advantage. While this technology offers leverage to military capabilities, it comes with challenges where one is the uncertainty and associated risk. A key question is how can these uncertainties be addressed. Recently published studies proposed information camouflage to transform information from one data domain to another. As this is comparatively a new approach, we investigate challenges of such transformations and how these associated uncertainties can be detected and addressed, specifically unknown-unknowns to improve decision-making.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.