In this paper we consider the zeros of the chromatic polynomial of series-parallel graphs. Complementing a result of Sokal, showing density outside the disk $|q-1|\leq1$, we show density of these zeros in the half plane $\Re(q)>3/2$ and we show there exists an open region $U$ containing the interval $(0,32/27)$ such that $U\setminus\{1\}$ does not contain zeros of the chromatic polynomial of series-parallel graphs. We also disprove a conjecture of Sokal by showing that for each large enough integer $\Delta$ there exists a series-parallel graph for which all vertices but one have degree at most $\Delta$ and whose chromatic polynomial has a zero with real part exceeding $\Delta$.
The core numbers of vertices in a graph are one of the most well-studied cohesive subgraph models because of the linear running time. In practice, many data graphs are dynamic graphs that are continuously changing by inserting or removing edges. The core numbers are updated in dynamic graphs with edge insertions and deletions, which is called core maintenance. When a burst of a large number of inserted or removed edges come in, we have to handle these edges on time to keep up with the data stream. There are two main sequential algorithms for core maintenance, \textsc{Traversal} and \textsc{Order}. It is proved that the \textsc{Order} algorithm significantly outperforms the \alg{Traversal} algorithm over all tested graphs with up to 2,083 times speedups. To the best of our knowledge, all existing parallel approaches are based on the \alg{Traversal} algorithm; also, their parallelism exists only for affected vertices with different core numbers, which will reduce to sequential when all vertices have the same core numbers. In this paper, we propose a new parallel core maintenance algorithm based on the \alg{Order} algorithm. Importantly, our new approach always has parallelism, even for the graphs where all vertices have the same core numbers. Extensive experiments are conducted over real-world, temporal, and synthetic graphs on a 64-core machine. The results show that for inserting and removing 100,000 edges using 16-worker, our method achieves up to 289x and 10x times speedups compared with the most efficient existing method, respectively.
Let $G=(V,E)$ be an $n$-vertex connected graph of maximum degree $\Delta$. Given access to $V$ and an oracle that given two vertices $u,v\in V$, returns the shortest path distance between $u$ and $v$, how many queries are needed to reconstruct $E$? We give a simple deterministic algorithm to reconstruct trees using $\Delta n\log_\Delta n+(\Delta+2)n$ distance queries and show that even randomised algorithms need to use at least $\frac1{100} \Delta n\log_\Delta n$ queries in expectation. The best previous lower bound was an information-theoretic lower bound of $\Omega(n\log n/\log \log n)$. Our lower bound also extends to related query models including distance queries for phylogenetic trees, membership queries for learning partitions and path queries in directed trees. We extend our deterministic algorithm to reconstruct graphs without induced cycles of length at least $k$ using $O_{\Delta,k}(n\log n)$ queries, which includes various graph classes of interest such as chordal graphs, permutation graphs and AT-free graphs. Since the previously best known randomised algorithm for chordal graphs uses $O_{\Delta}(n\log^2 n)$ queries in expectation, we both get rid off the randomness and get the optimal dependency in $n$ for chordal graphs and various other graph classes. Finally, we build on an algorithm of Kannan, Mathieu, and Zhou [ICALP, 2015] to give a randomised algorithm for reconstructing graphs of treelength $k$ using $O_{\Delta,k}(n\log^2n)$ queries in expectation.
In this short paper, we show that if $\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ be a collection of families compact $(r, R)$-fat convex sets in $\mathbb{R}^{d}$ and if every heterochromatic sequence with respect to $\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ contains $k+2$ convex sets that can be pierced by a $k$-flat then there exists a family $\mathcal{F}_{m}$ from the collection that can be pierced by finitely many $k$-flats. Additionally, we show that if $\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ be a collection of families of compact convex sets in $\mathbb{R}^{d}$ where each $\mathcal{F}_{n}$ is a family of closed balls (axis parallel boxes) in $\mathbb{R}^{d}$ and every heterochromatic sequence with respect to $\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ contains $2$ intersecting closed balls (boxes) then there exists a family $\mathcal{F}_{m}$ from the collection that can be pierced by a finite number of points from $\mathbb{R}^{d}$. To complement the above results, we also establish some impossibility of proving similar results for other more general families of convex sets. Our results are a generalization of $(\aleph_0,k+2)$-Theorem for $k$-transversals of convex sets by Keller and Perles (Symposium on Computational Geometry 2022), and can also be seen as a colorful infinite variant of $(p,q)$-Theorems of Alon and Klietman (Advances in Mathematics 1992), and Alon and Kalai (Discrete & Computational Geometry 1995).
We present new min-max relations in digraphs between the number of paths satisfying certain conditions and the order of the corresponding cuts. We define these objects in order to capture, in the context of solving the half-integral linkage problem, the essential properties needed for reaching a large bramble of congestion two (or any other constant) from the terminal set. This strategy has been used ad-hoc in several articles, usually with lengthy technical proofs, and our objective is to abstract it to make it applicable in a simpler and unified way. We provide two proofs of the min-max relations, one consisting in applying Menger's Theorem on appropriately defined auxiliary digraphs, and an alternative simpler one using matroids, however with worse polynomial running time. As an application, we manage to simplify and improve several results of Edwards et al. [ESA 2017] and of Giannopoulou et al. [SODA 2022] about finding half-integral linkages in digraphs. Concerning the former, besides being simpler, our proof provides an almost optimal bound on the strong connectivity of a digraph for it to be half-integrally feasible under the presence of a large bramble of congestion two (or equivalently, if the directed tree-width is large, which is the hard case). Concerning the latter, our proof uses brambles as rerouting objects instead of cylindrical grids, hence yielding much better bounds and being somehow independent of a particular topology. We hope that our min-max relations will find further applications as, in our opinion, they are simple, robust, and versatile to be easily applicable to different types of routing problems in digraphs.
Partial orders are a natural model for the social hierarchies that may constrain "queue-like" rank-order data. However, the computational cost of counting the linear extensions of a general partial order on a ground set with more than a few tens of elements is prohibitive. Vertex-series-parallel partial orders (VSPs) are a subclass of partial orders which admit rapid counting and represent the sorts of relations we expect to see in a social hierarchy. However, no Bayesian analysis of VSPs has been given to date. We construct a marginally consistent family of priors over VSPs with a parameter controlling the prior distribution over VSP depth. The prior for VSPs is given in closed form. We extend an existing observation model for queue-like rank-order data to represent noise in our data and carry out Bayesian inference on "Royal Acta" data and Formula 1 race data. Model comparison shows our model is a better fit to the data than Plackett-Luce mixtures, Mallows mixtures, and "bucket order" models and competitive with more complex models fitting general partial orders.
We study the problem of finding the smallest graph that does not occur as an induced subgraph of a given graph. This missing induced subgraph has at most logarithmic size and can be found by a brute-force search, in an $n$-vertex graph, in time $n^{O(\log n)}$. We show that under the Exponential Time Hypothesis this quasipolynomial time bound is optimal. We also consider variations of the problem in which either the missing subgraph or the given graph comes from a restricted graph family; for instance, we prove that the smallest missing planar induced subgraph of a given planar graph can be found in polynomial time.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.
Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be learned. Comprehensive experiments conducted on public datasets demonstrate the effectiveness of the proposed method over the state-of-art methods. Notably, our model gains substantial improvements when only a few labeled samples are provided.
Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.