亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modern complex datasets often consist of various sub-populations. To develop robust and generalizable methods in the presence of sub-population heterogeneity, it is important to guarantee a uniform learning performance instead of an average one. In many applications, prior information is often available on which sub-population or group the data points belong to. Given the observed groups of data, we develop a min-max-regret (MMR) learning framework for general supervised learning, which targets to minimize the worst-group regret. Motivated from the regret-based decision theoretic framework, the proposed MMR is distinguished from the value-based or risk-based robust learning methods in the existing literature. The regret criterion features several robustness and invariance properties simultaneously. In terms of generalizability, we develop the theoretical guarantee for the worst-case regret over a super-population of the meta data, which incorporates the observed sub-populations, their mixtures, as well as other unseen sub-populations that could be approximated by the observed ones. We demonstrate the effectiveness of our method through extensive simulation studies and an application to kidney transplantation data from hundreds of transplant centers.

相關內容

Causal discovery methods aim to determine the causal direction between variables using observational data. Functional causal discovery methods, such as those based on the Linear Non-Gaussian Acyclic Model (LiNGAM), rely on structural and distributional assumptions to infer the causal direction. However, approaches for assessing causal discovery methods' performance as a function of sample size or the impact of assumption violations, inevitable in real-world scenarios, are lacking. To address this need, we propose Causal Direction Detection Rate (CDDR) diagnostic that evaluates whether and to what extent the interaction between assumption violations and sample size affects the ability to identify the hypothesized causal direction. Given a bivariate dataset of size N on a pair of variables, X and Y, CDDR diagnostic is the plotted comparison of the probability of each causal discovery outcome (e.g. X causes Y, Y causes X, or inconclusive) as a function of sample size less than N. We fully develop CDDR diagnostic in a bivariate case and demonstrate its use for two methods, LiNGAM and our new test-based causal discovery approach. We find CDDR diagnostic for the test-based approach to be more informative since it uses a richer set of causal discovery outcomes. Under certain assumptions, we prove that the probability estimates of detecting each possible causal discovery outcome are consistent and asymptotically normal. Through simulations, we study CDDR diagnostic's behavior when linearity and non-Gaussianity assumptions are violated. Additionally, we illustrate CDDR diagnostic on four real datasets, including three for which the causal direction is known.

Trajectory inference seeks to recover the temporal dynamics of a population from snapshots of its (uncoupled) temporal marginals, i.e. where observed particles are not tracked over time. Lavenant et al. arXiv:2102.09204 addressed this challenging problem under a stochastic differential equation (SDE) model with a gradient-driven drift in the observed space, introducing a minimum entropy estimator relative to the Wiener measure. Chizat et al. arXiv:2205.07146 then provided a practical grid-free mean-field Langevin (MFL) algorithm using Schr\"odinger bridges. Motivated by the overwhelming success of observable state space models in the traditional paired trajectory inference problem (e.g. target tracking), we extend the above framework to a class of latent SDEs in the form of observable state space models. In this setting, we use partial observations to infer trajectories in the latent space under a specified dynamics model (e.g. the constant velocity/acceleration models from target tracking). We introduce PO-MFL to solve this latent trajectory inference problem and provide theoretical guarantees by extending the results of arXiv:2102.09204 to the partially observed setting. We leverage the MFL framework of arXiv:2205.07146, yielding an algorithm based on entropic OT between dynamics-adjusted adjacent time marginals. Experiments validate the robustness of our method and the exponential convergence of the MFL dynamics, and demonstrate significant outperformance over the latent-free method of arXiv:2205.07146 in key scenarios.

The causal dependence in data is often characterized by Directed Acyclic Graphical (DAG) models, widely used in many areas. Causal discovery aims to recover the DAG structure using observational data. This paper focuses on causal discovery with multi-variate count data. We are motivated by real-world web visit data, recording individual user visits to multiple websites. Building a causal diagram can help understand user behavior in transitioning between websites, inspiring operational strategy. A challenge in modeling is user heterogeneity, as users with different backgrounds exhibit varied behaviors. Additionally, social network connections can result in similar behaviors among friends. We introduce personalized Binomial DAG models to address heterogeneity and network dependency between observations, which are common in real-world applications. To learn the proposed DAG model, we develop an algorithm that embeds the network structure into a dimension-reduced covariate, learns each node's neighborhood to reduce the DAG search space, and explores the variance-mean relation to determine the ordering. Simulations show our algorithm outperforms state-of-the-art competitors in heterogeneous data. We demonstrate its practical usefulness on a real-world web visit dataset.

We develop both theory and algorithms to analyze privatized data in the unbounded differential privacy(DP), where even the sample size is considered a sensitive quantity that requires privacy protection. We show that the distance between the sampling distributions under unbounded DP and bounded DP goes to zero as the sample size $n$ goes to infinity, provided that the noise used to privatize $n$ is at an appropriate rate; we also establish that ABC-type posterior distributions converge under similar assumptions. We further give asymptotic results in the regime where the privacy budget for $n$ goes to zero, establishing similarity of sampling distributions as well as showing that the MLE in the unbounded setting converges to the bounded-DP MLE. In order to facilitate valid, finite-sample Bayesian inference on privatized data in the unbounded DP setting, we propose a reversible jump MCMC algorithm which extends the data augmentation MCMC of Ju et al. (2022). We also propose a Monte Carlo EM algorithm to compute the MLE from privatized data in both bounded and unbounded DP. We apply our methodology to analyze a linear regression model as well as a 2019 American Time Use Survey Microdata File which we model using a Dirichlet distribution.

The multivariate hypergeometric distribution describes sampling without replacement from a discrete population of elements divided into multiple categories. Addressing a gap in the literature, we tackle the challenge of estimating discrete distributions when both the total population size and the sizes of its constituent categories are unknown. Here, we propose a novel solution using the hypergeometric likelihood to solve this estimation challenge, even in the presence of severe under-sampling. We develop our approach to account for a data generating process where the ground-truth is a mixture of distributions conditional on a continuous latent variable, such as with collaborative filtering, using the variational autoencoder framework. Empirical data simulation demonstrates that our method outperforms other likelihood functions used to model count data, both in terms of accuracy of population size estimate and in its ability to learn an informative latent space. We demonstrate our method's versatility through applications in NLP, by inferring and estimating the complexity of latent vocabularies in text excerpts, and in biology, by accurately recovering the true number of gene transcripts from sparse single-cell genomics data.

The study of population dynamics originated with early sociological works but has since extended into many fields, including biology, epidemiology, evolutionary game theory, and economics. Most studies on population dynamics focus on the problem of prediction rather than control. Existing mathematical models for control in population dynamics are often restricted to specific, noise-free dynamics, while real-world population changes can be complex and adversarial. To address this gap, we propose a new framework based on the paradigm of online control. We first characterize a set of linear dynamical systems that can naturally model evolving populations. We then give an efficient gradient-based controller for these systems, with near-optimal regret bounds with respect to a broad class of linear policies. Our empirical evaluations demonstrate the effectiveness of the proposed algorithm for control in population dynamics even for non-linear models such as SIR and replicator dynamics.

We consider the dynamics imposed by natural selection on the populations of two competing, sexually reproducing, haploid species. In this setting, the fitness of any genome varies over time due to the changing population mix of the competing species; crucially, this fitness variation arises naturally from the model itself, without the need for imposing it exogenously as is typically the case. Previous work on this model [14] showed that, in the special case where each of the two species exhibits just two phenotypes, genetic diversity is maintained at all times. This finding supported the tenet that sexual reproduction is advantageous because it promotes diversity, which increases the survivability of a species. In the present paper we consider the more realistic case where there are more than two phenotypes available to each species. The conclusions about diversity in general turn out to be very different from the two-phenotype case. Our first result is negative: namely, we show that sexual reproduction does not guarantee the maintenance of diversity at all times, i.e., the result of [14] does not generalize. Our counterexample consists of two competing species with just three phenotypes each. We show that, for any time~$t_0$ and any $\varepsilon>0$, there is a time $t\ge t_0$ at which the combined diversity of both species is smaller than~$\varepsilon$. Our main result is a complementary positive statement, which says that in any non-degenerate example, diversity is maintained in a weaker, ``infinitely often'' sense. Thus, our results refute the supposition that sexual reproduction ensures diversity at all times, but affirm a weaker assertion that extended periods of high diversity are necessarily a recurrent event.

Accurate and robust localization remains a significant challenge for autonomous vehicles. The cost of sensors and limitations in local computational efficiency make it difficult to scale to large commercial applications. Traditional vision-based approaches focus on texture features that are susceptible to changes in lighting, season, perspective, and appearance. Additionally, the large storage size of maps with descriptors and complex optimization processes hinder system performance. To balance efficiency and accuracy, we propose a novel lightweight visual semantic localization algorithm that employs stable semantic features instead of low-level texture features. First, semantic maps are constructed offline by detecting semantic objects, such as ground markers, lane lines, and poles, using cameras or LiDAR sensors. Then, online visual localization is performed through data association of semantic features and map objects. We evaluated our proposed localization framework in the publicly available KAIST Urban dataset and in scenarios recorded by ourselves. The experimental results demonstrate that our method is a reliable and practical localization solution in various autonomous driving localization tasks.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

Knowledge graphs capture interlinked information between entities and they represent an attractive source of structured information that can be harnessed for recommender systems. However, existing recommender engines use knowledge graphs by manually designing features, do not allow for end-to-end training, or provide poor scalability. Here we propose Knowledge Graph Convolutional Networks (KGCN), an end-to-end trainable framework that harnesses item relationships captured by the knowledge graph to provide better recommendations. Conceptually, KGCN computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relations for a given user and then transforming the knowledge graph into a user-specific weighted graph. Then, KGCN applies a graph convolutional neural network that computes an embedding of an item node by propagating and aggregating knowledge graph neighborhood information. Moreover, to provide better inductive bias KGCN uses label smoothness (LS), which provides regularization over edge weights and we prove that it is equivalent to label propagation scheme on a graph. Finally, We unify KGCN and LS regularization, and present a scalable minibatch implementation for KGCN-LS model. Experiments show that KGCN-LS outperforms strong baselines in four datasets. KGCN-LS also achieves great performance in sparse scenarios and is highly scalable with respect to the knowledge graph size.

北京阿比特科技有限公司